底質試料中のダイオキシン類分析における前処理の検討 - 硫酸シリカゲル処理の有効性について-

岸田 真男*、山本 仁史*、服部 幸和*

はじめに

底質には種々の環境汚染物質が蓄積している。特に 都市河川では、有機汚濁物質が多く含まれた粘土・シ ルト状の黒い泥となっている。このような試料に含ま れる超微量のダイオキシン類を定量する場合、相当な 技術と労力が必要とされる。

底質中のダイオキシン類の前処理[1]は一般的に、硫酸処理-シリカゲルカラムクロマトグラフィー又は多層シリカゲルカラムクロマトグラフィー-アルミナカラムクロマトグラフィーの順に行われる。都市河川の底泥の分析においては硫酸処理の回数を多くする必要があったり、共雑物を十分に除去できなかったりする場合がある。特に硫酸処理では振とう後、硫酸層とn-ヘキサン層を十分分離させるのに時間を要するので、処理回数が作業時間に大きく影響を与える。

著者らは硫酸処理の回数を減少させることを目的と して、硫酸処理の前に粗抽出液を硫酸シリカゲルで処 理する方法を検討した。また併せて、多層シリカゲル カラムクロマトグラフィーを使用した方法や硫酸シリ カゲル-硫酸処理と多層シリカゲルカラムクロマトグ ラフィーを併用した方法とも比較し、クリーンアップ 効果を検討した。

実験方法

1.実験の概略

本研究では、44%硫酸シリカゲル3g、6g、9gのそ れぞれの場合について標準試薬を用いた添加回収試験 を行った後、実試料を用いて検討を行った。検討した 前処理過程の概略をFig.1に示す。Method1は硫酸処理-シリカゲルカラムクロマトグラフィー-活性炭分散シ リカゲルカラムクロマトグラフィー、Method2は Method1の前に粗抽出液を44%硫酸シリカゲルカラムク ロマトグラフィーの代わりに多層シリカゲルカラムク ロマトグラフィーを用いた方法で、44%硫酸シリカゲ ルを用いた方法を一般的な前処理法と比較した。また、 Method4は44%硫酸シリカゲル-硫酸処理-多層シリカ ゲルカラムクロマトグラフィー-活性炭分散シリカゲ ルカラムクロマトグラフィーで、Method2とクリーン アップ効果を比較した。各操作の詳細は以下に示した。

2. 試 薬

ダイオキシン類の標準試薬は全てWellington社製を 用いた。アセトン、トルエン、n-ヘキサン、2%水酸 化カリウムシリカゲル、10%硝酸銀シリカゲル、44% 硫酸シリカゲル、22%硫酸シリカゲルは和光純薬製ダ イオキシン類分析用を、ジクロロメタンと活性炭分散 シリカゲルは関東化学製ダイオキシン類分析用を用い た。シリカゲルは和光純薬製PCB分析用を130℃で一夜 加熱したものを使用した。無水硫酸ナトリウムは和光 純薬製PCB分析用をn-ヘキサンで洗浄して用いた。

3. 添加回収試験

ブフナ-漏斗に少量の無水硫酸ナトリウム、44%硫 酸シリカゲル、少量の無水硫酸ナトリウムを順に積層 させた。44%硫酸シリカゲルは3g、6g、9gの場合に ついて検討した。n-ヘキサンで洗浄後、分液漏斗の上 に置き、クリーンアップスパイク溶液を添加した。ク リーンアップスパイクは¹³C₁₂でラベル化された毒性係 数を持つ31種の異性体と¹³C₁₂-1368TeCDDを使用し、 各々25pg/µL (OCDD/F:50pg/µL) に調製した混合 溶液を40µL添加した。次に、粗抽出液を添加し、ト ルエン25mL、n-ヘキサン100mLを順に流した。その後、 分液漏斗に濃硫酸約10mLを加えて振とうし、約1時 間静置後硫酸層を除去した。この操作を硫酸層の色素 が目視で確認できなくなるまで繰り返した。その後、 n-ヘキサン洗浄水約30mLで3回洗浄し、無水硫酸ナ トリウムで脱水した後、REで約1mLに濃縮し、10mL 遠沈管へ移し替え、シリンジスパイクを添加し、窒 素ガスを吹き付けてそれぞれ50 μ Lにした。シリン ジスパイクは $^{13}C_{12}$ -23'4'5-TeCB、 $^{13}C_{12}$ -1368-TeDF、 ¹³C₁₂-1234689-HpCDFを各25pg/μLに調製した混合溶 液を40 μ L 用いた。

^{*}大阪府環境情報センター環境測定質分析課

Fig.1 Scheme of flow charts of analytical procedures for the determination of PCDDs, PCDFs, and co-planer PCBs

Experimental conditions of the present procedures are described in the text in detail.

4. 実試料を用いた比較検討

4.1 試料

実験に用いた底質試料[2]は、神崎川新三国橋付近で 2001年7月に、橋上からエクマンバージ型採泥器で採 取した。採取した試料をステンレス製バットに移し、 小石や葉などの異物を取り除いた後、室温で乾燥させた。乾燥後、32メッシュのステンレス製篩に通し、乳 鉢で粉砕して分析用の試料とした。なお、乾燥及び保存は遮光下で行った。

4.2 抽出

約12gの試料を円筒濾紙に入れ、トルエンでソックス

Table1 Operational conditions for HRGC/HRMS

	Te-HxCDDs/DFs	Hp-OCDDs/DFs and Co-PCBs		
HRGC(HP6930)				
Column	SP-2331(SPELCO)	DB-5MS(J&W)		
	60m×0.32mm I.D.,0.13µm f.t.	60m×0.32mm I.D.,0.25µm f.t.		
Column temp.	130°C(1min)-20°C/min—180°C(0min)-3°C/min- 240°C(15min)-20°C/min-260°C(20.5min)	150°C(1min)-20°C/min-180°C(0min)-3°C/min-240°C(15min)- 20°C/min-260°C (12min)-30°C/min-290°C (8.5min)		
Carrier gas	He 1.0mL/min	He 1.0mL/min		
Injection temp.	260°C	300°C		
Injection mode	splitless (90sec)	splitless (90sec)		
HRMS(JEOL700D)				
Ion source	EI positive	EI positive		
Ion source temp.	260°C	290°C		
Interface temp.	260°C	290°C		
Ionization voltage	38eV	38eV		
Monitor ions (m/z)	native ions	¹³ C ₁₂ labeled ions		
TeCDDs	319.8965 321.8936	331.9368 333.9339		
PeCDDs	355.8546 357.8517	367.8949 369.8919		
HxCDDs	389.8156 391.8127	401.8559 403.8530		
HpCDDs	423.7767 425.7737	435.8169 437.8140		
OCDD	457.7377 459.7348	469.7780 471.7750		
TeCDFs	303.9016 305.8987	315.9419 317.9389		
PeCDFs	339.8597 341.8568	351.9000 353.8970		
HxCDFs	373.8207 375.8178	385.8610 387.8580		
HpCDFs	407.7818 409.7788	419.8220 421.8191		
OCDF	441.7428 443.7398	453.7830 455.7801		
TeCBs	289.9224 291.9194	301.9626 303.9597		
PeCBs	325.8804 327.8775	337.9207 339.9178		
HxCBs	359.8415 361.8385	371.8817 373.8788		
HpCBs	393.8025 395.7995	405.8428 407.8398		

レー抽出を16時間行った。粗抽出液はロータリーエバ ポレーター(RE)で約1mLに濃縮し、n-ヘキサンに転 溶し、メスフラスコで20mLに調整した。その後ホール ピペットで5mLずつ分取し、それぞれをMethod1から 4の検討に用いた。

4.3 硫酸処理又は44%硫酸シリカゲル-硫酸処理

硫酸処理:粗抽出液を分析漏斗へ移し変え、n-ヘキ サン約150mL及びクリーンアップスパイクを加えた。ス パイクは¹³C₁₂でラベル化された毒性係数を持つ31種の 異性体と¹³C₁₂-1368TeCDDを使用し、各々25pg/ μ L (OCDD/F:50pg/ μ L)に調製した混合溶液を40 μ L添加 した。添加後、分液漏斗に濃硫酸約10mLを加えて振と うし、約1時間静置後硫酸層を除去した。この操作を硫 酸層の色素が目視で確認できなくなるまで繰り返した。 その後、n-ヘキサン洗浄水約30mLで3回洗浄し、無水 硫酸ナトリウムで脱水した後、REで約1mLに濃縮した。

44%硫酸シリカゲルー硫酸処理:まず、ブフナー漏斗 に少量の無水硫酸ナトリウム、44%硫酸シリカゲル9g、 少量の無水硫酸ナトリウムを順に積層させ、n-ヘキサ ンで洗浄後、分液漏斗の上に置き、上述のクリーンアッ プスパイク溶液を添加した。次に、粗抽出液を添加し、 トルエン25mL、及びn-ヘキサン100mLを順に流した。 その後、上述に従って硫酸処理、水洗、脱水を行い、 REで約1mLに濃縮した。

4.4 シリカゲルカラムクロマトグラフィー又は多 層シリカゲルカラムクロマトグラフィー

シリカゲルカラムクロマトグラフィー:カラム管に シリカゲル3g、少量の無水硫酸ナトリウム、適当量の 粒状銅、少量の無水硫酸ナトリウムの順で湿式充填し、 n-ヘキサン100mLを滴下させて洗浄した。次に、濃縮 液約1mLをn-ヘキサンで数回洗い込んだ後、n-ヘキサ ン180mLで溶出し、REで約1mLに濃縮した。

多層シリカゲルカラムカラムクロマトグラフィー: カラム管にシリカゲル0.9g、2%水酸化カリウムシリ カゲル3g、シリカゲル3g、44%硫酸シリカゲル4.5g、 22%硫酸シリカゲル6g、シリカゲル0.9g、10%硝酸銀 シリカゲル3g、少量の無水硫酸ナトリウムの順で湿式 充填し、n-ヘキサン150mLを滴下させて洗浄した。次 に、濃縮液約1mLをn-ヘキサンで数回洗い込んだ後、 n-ヘキサン250mLで溶出し、REで約1mLに濃縮した。

4.5 活性炭シリカゲルカラムクロマトグラフィー カラム管に少量の無水硫酸ナトリウム、活性炭シリ カゲル1g、少量の無水硫酸ナトリウムの順で乾式充填 した。次に、濃縮液約1mLをn-ヘキサンで数回洗い込 んだ後、(1)n-ヘキサン20mL、(2)25%(v/v)ジクロロメ タン/n-ヘキサン50mL、(3)トルエン250mLの順で流下 させた。流下後、(2)と(3)をそれぞれREで約1mLに濃縮 し、10mL遠沈管に移し変え、窒素ガスで溶媒を飛散さ Table2 Recoveries of cleanup spikes for the cleanup method with sulfuric acid-impregnated silica gel

				recoveries (%)			
cleanup spikes		44% sulfuric acid					
		impregnated silica gel					
		3g	6g	9g			
[¹³ C ₁₂]-1,3,6,8-TeCDD	(a)	95	88	87			
[¹³ C ₁₂]-2,3,7,8-TeCDD	(a)	91	82	83			
[¹³ C ₁₂]-1,2,3,7,8-PeCDD	(a)	87	85	92			
[¹³ C ₁₂]-1,2,3,4,7,8-HxCDD	(a)	98	90	89			
[¹³ C ₁₂]-1,2,3,6,7,8-HxCDD	(a)	98	91	92			
[¹³ C ₁₂]-1,2,3,7,8,9-HxCDD	(a)	92	70	102			
[¹³ C ₁₂]-1,2,3,4,6,7,8-HpCDD	(b)	89	84	83			
[¹³ C ₁₂]-OCDD	(b)	80	73	73			
$[^{13}C_{12}]$ -2,3,7,8-TeCDF	(a)	81	86	89			
$[^{13}C_{12}]$ -1,2,3,7,8-PeCDF	(a)	91	103	101			
¹³ C ₁₂]-2,3,4,7,8-PeCDF	(a)	82	80	82			
[¹³ C ₁₂]-1,2,3,4,7,8-HxCDF	(a)	88	87	98			
[¹³ C ₁₂]-1,2,3,6,7,8-HxCDF	(a)	95	90	98			
[¹³ C ₁₂]-1,2,3,7,8,9-HxCDF	(a)	90	71	78			
[¹³ C ₁₂]-2,3,4,6,7,8-HxCDF	(a)	81	78	83			
[¹³ C ₁₂]-1,2,3,4,6,7,8,HpCDF	(b)	94	106	106			
[¹³ C ₁₂]-1,2,3,4,7,8,9-HpCDF	(b)	81	75	78			
[¹³ C ₁₂]-OCDF	(b)	85	68	71			
$[^{13}C_{12}]$ -3,4,4',5-TeCB (#81)	(c)	93	101	101			
[¹³ C ₁₂]-3,3',4,4'-TeCB (#77)	(c)	90	95	97			
[¹³ C ₁₂]-3,3',4,4',5-PeCB (#126)	(c)	101	101	99			
[¹³ C ₁₂]-3,3',4,4',5,5'-HxCB (#169)	(c)	106	116	112			
$[^{13}C_{12}]-2',3,4,4',5-PeCB$ (#123)	(c)	97	108	108			
$[^{13}C_{12}]$ -2,3',4,4',5-PeCB (#118)	(c)	97	109	105			
$[^{13}C_{12}]$ -2,3,3',4,4'-PeCB (#105)	(c)	95	104	105			
$[^{13}C_{12}]$ -2,3,4,4',5-PeCB (#114)	(c)	98	107	104			
¹³ C ₁₂]-2,3',4,4',5,5'-HxCB (#167)	(c)	99	107	106			
$[^{13}C_{12}]^{-2.3.3'.4.4'.5-HxCB}$ (#156)		104	102	105			
^{[13} C ₁₂]-2,3,3',4,4',5'-HxCB (#157)		104	104	100			
[¹³ C ₁₂]-2,3,3',4,4',5,5'-HpCB (#189)	(c)	109	105	100			

Recoveries were calculated with ${\rm ^{13}C_{12}}$ labelled standards of

 ${}^{13}C_{12}$ -1368-TeCDF, ${}^{13}C_{12}$ -1234689HpCDF, and ${}^{13}C_{12}$ -23'4'5TeCB for (a), (b), and (c), respectively.

Table3	Concent	rations	of PCDDs,	PCDFs,	and	Co-PCBs
determi	ned with	method	1-4			

	Concn. (pg/g-dry)			
	Method1	Method2	Method3	Method4
2,3,7,8-TeCDD	17	19	17	16
Σ T eCDDs	560	580	550	530
1,2,3,7,8-PeCDD	15	15	16	15
Σ PeCDDs	380	390	390	380
1,2,3,4,7,8-HxCDD	33	31	31	30
1,2,3,6,7,8-HxCDD	54	54	52	52
1,2,3,7,8,9-HxCDD	40	41	38	41
Σ HxCDDs	840	870	820	820
1,2,3,4,6,7,8-HpCDD	510	520	510	520
Σ HpCDDs	1000	1000	1000	1000
OCDD	2800	2800	2800	2800
2,3,7,8-T eCDF	13	15	15	15
Σ TeCDFs	430	430	440	430
1,2,3,7,8-PeCDF	46	48	43	44
2,3,4,7,8-PeCDF	61	60	63	62
Σ PeCDFs	720	770	690	720
1,2,3,4,7,8-HxCDF	140	150	140	140
1,2,3,6,7,8-HxCDF	140	160	150	160
1,2,3,7,8,9-HxCDF	20	17	17	16
2,3,4,6,7,8-HxCDF	310	320	340	340
Σ HxCDFs	1700	1800	1800	1900
1,2,3,4,6,7,8,HpCDF	770	790	790	790
1,2,3,4,7,8,9-HpCDF	160	160	150	160
Σ HpCDFs	1600	1600	1600	1600
OCDF	1300	1300	1300	1300
3,4,4',5-TeCB (#81)	48	45	50	49
3,3',4,4'-TeCB (#77)	1300	1300	1300	1300
3,3',4,4',5-PeCB (#126)	51	51	49	45
3,3',4,4',5,5'-HxCB (#169)	15	14	15	15
2',3,4,4',5-PeCB (#123)	210	220	250	240
2,3',4,4',5-PeCB (#118)	9600	9900	9600	9500
2,3,3',4,4'-PeCB (#105)	3400	3400	3300	3300
2,3,4,4',5-PeCB (#114)	280	230	240	280
2,3',4,4',5,5'-HxCB (#167)	490	470	480	480
2,3,3',4,4',5-HxCB (#156)	1300	1300	1300	1300
2,3,3',4,4',5'-HxCB (#157)	290	300	300	290
2,3,3',4,4',5,5'-HpCB (#189)	92	96	97	95
ΣTEQ	160	170	170	170

せ、少量のn-ヘキサンで壁面を洗浄した。その後、も う一度窒素ガスで溶媒を飛散させ、シリンジスパイク を添加した。(2)には25pg/ μ L ¹³C₁₂-23'4'5-TeCB溶液 を 40 μ L 添 加 し、(3) に は ¹³C₁₂-1368-TeDF、 ¹³C₁₂-1234689-HpCDFを各25pg/ μ Lに調製した混合溶 液を40uL添加した。添加後、(3)を再び少量のn-ヘキサ ンで壁面を洗浄し、窒素ガスを吹き付けで40 μ Lにし、 高分解能ガスクロマトグラフ/高分解能質量分析計 (HRGC/HRMS) で測定した。その後、(3)と(2)を混合 させて、窒素ガスを吹き付けて 40 μ Lにし、 HRGC/HRMSで測定した。

5. 定量

ダイオキシン類の定量はHRGC/HRMS(HP6890/ JEOL JMS-700D)を用い、質量分解能10000以上の高分 解能SIMで行った。HRGC/HRMSの測定条件をTable1 に示す。

結果及び考察

1. 44%硫酸シリカゲル-硫酸処理の添加回収試験

クリーンアップスパイクの添加回収試験の結果を Table2に示す。44%硫酸シリカゲルの量が3g、6g、 9gのいずれの場合でも全ての異性体の回収率がほぼ 70%以上であり、満足のできる結果であった。

2. 実試料への適応

2.1 硫酸処理の処理回数

粗抽出液は種々の汚染物質を多量に含んでおり、硫酸処理の処理回数はMethod1と3では5回必要であった。しかし、44%硫酸シリカゲルを用いたMethod2と4では1回で充分であった。44%硫酸シリカゲルで粗抽出液を処理した場合、ほとんどの色素成分が除去でき、通過した粗抽出液はほぼ透明色になり、前処理時間が短縮できることがわかった。

2.2 測定値

Method1-4により測定した異性体濃度と同族体濃度 をTable3に示す。各Method間で測定値に有意な誤差は ほとんど認められなかった。また、Method1-4による クリーンアップスパイクの回収率をTable4に示す。 Method2によるクリーンアップスパイクの回収率は 60-111%の範囲内であり、他のMethodと同程度であっ た。Method4に関して¹³C₁₂-123789-HxCDFの回収率が 29%であったが、その原因として硫酸シリカゲル処理 と多層カラムを併用することで処理工程が長くなり損 失分が多くなったと考えられる。

2.3 クロマトグラムの比較

Method1-4のクロマトグラムの一部をFig.2-15に示 す。各クロマトグラムはTable2に示す2チャンネルで モニタリングしたものの平均であるが、すべての異性 体で各Methodによる差異は認められなかった。従って Method2は他のMethodと同程度のクリーンアップ効果 を有すると考えられる。また、Method4はMethod2と比 較した場合、本研究で用いた底質試料に関してはさほ ど大きな効果は得られなかった。

Table4 Recoveries of cleanup-spikes with method1-4

		recoveries(%)		
cleanup spikes ^(a)	Method1	Method2	Method3	Method4
[¹³ C ₁₂]-1,3,6,8-TeCDD	94	90	92	90
[¹³ C ₁₂]-2,3,7,8-TeCDD	89	89	93	92
[¹³ C ₁₂]-1,2,3,7,8-PeCDD	99	99	106	100
[¹³ C ₁₂]-1,2,3,4,7,8-HxCDD	101	97	114	108
[¹³ C ₁₂]-1,2,3,6,7,8-HxCDD	91	89	106	99
[¹³ C ₁₂]-1,2,3,7,8,9-HxCDD	93	88	106	95
[¹³ C ₁₂]-1,2,3,4,6,7,8-HpCDD	79	75	81	76
[¹³ C ₁₂]-OCDD	66	63	51	50
[¹³ C ₁₂]-2,3,7,8-TeCDF	91	91	90	88
[¹³ C ₁₂]-1,2,3,7,8-PeCDF	91	83	103	97
[¹³ C ₁₂]-2,3,4,7,8-PeCDF	92	90	99	92
[¹³ C ₁₂]-1,2,3,4,7,8-HxCDF	84	82	92	79
[¹³ C ₁₂]-1,2,3,6,7,8-HxCDF	97	89	98	83
[¹³ C ₁₂]-1,2,3,7,8,9-HxCDF	62	60	54	29
[¹³ C ₁₂]-2,3,4,6,7,8-HxCDF	79	77	85	75
[¹³ C ₁₂]-1,2,3,4,6,7,8,HpCDF	94	84	86	85
[¹³ C ₁₂]-1,2,3,4,7,8,9-HpCDF	75	73	73	69
[¹³ C ₁₂]-OCDF	75	69	55	53
[¹³ C ₁₂]-3,4,4',5-TeCB (#81)	93	97	96	89
[¹³ C ₁₂]-3,3',4,4'-TeCB (#77)	86	91	97	88
[¹³ C ₁₂]-3,3',4,4',5-PeCB (#126)	85	90	105	95
[¹³ C ₁₂]-3,3',4,4',5,5'-HxCB (#169)	102	104	121	111
[¹³ C ₁₂]-2',3,4,4',5-PeCB (#123)	101	79	95	90
[¹³ C ₁₂]-2,3',4,4',5-PeCB (#118)	107	85	102	94
[¹³ C ₁₂]-2,3,3',4,4'-PeCB (#105)	105	99	106	101
[¹³ C ₁₂]-2,3,4,4',5-PeCB (#114)	108	75	92	85
[¹³ C ₁₂]-2,3',4,4',5,5'-HxCB (#167)	108	98	105	99
[¹³ C ₁₂]-2,3,3',4,4',5-HxCB (#156)	113	98	109	106
[¹³ C ₁₂]-2,3,3',4,4',5'-HxCB (#157)	113	110	110	112
[¹³ C ₁₂]-2,3,3',4,4',5,5'-HpCB (#189)	112	111	104	108

(a):Recovey standards are the the same as shown in Table2.

Page 1

Injection View

SIM chromatograms of PeCDDs Fig.3

Fig.7 SIM chromatograms of TeCDFs

Fig.8 SIM chromatograms of PeCDFs

Fig.9 SIM chromatograms of HxCDFs

Fig.13 SIM chromatograms of PeCBs

まとめ

本研究で硫酸処理の前に44%硫酸シリカゲルを用い た方法を検討したが、硫酸処理の回数が大幅に減少し たことから前処理に要する作業時間が短縮した。また、 測定値が従来法と同程度であり、クリーンアップ効果 も同程度であったことから本法は非常に有効であると 言える。

謝 辞

本研究を遂行するにあたり、有益な助言をいただき ました財団法人日本気象協会関西本部中村史郎氏に深 く感謝します。

参考文献

- 1)ダイオキシン類に係る底質調査測定マニュアル(平 成12年3月環境庁水質保全局水質管理課)
- 2)服部幸和ら:第11回環境化学討論会講演要旨集, pp260-261 (2002)