Ⅱ 微小粒子状物質(PM2.5)調査

1 平成 21 - 22 年度調査概要

1-1 調査名称

微小粒子状物質(PM2.5)調查

1-2 調査目的

大阪府域における微小粒子状物質(以下「PM2.5」と記す。)による大気の汚染状況の実態を把握し、工場、自動車等の発生源からの PM2.5 の排出削減対策に資することを目的とする。

1-3 調査内容

大阪府域の調査地点に PM2.5 ロウボリウムエアサンプラを設置して PM2.5 を捕集し、質量濃度を測定するとともに、成分(金属類、イオン成分及び炭素成分)の分析を行い、PM2.5 中の各成分濃度の状況や発生源等の解析を行った。

1-3-1 調査地点

平成21年度の調査地点は、一般環境大気測定局の大阪府環境農林水産総合研究所 (以下「森ノ宮」と記す。)である。地点の近傍に目立った固定発生源はないが、北約 200mには、大阪市道築港深江線とその上を阪神高速道路東大阪線が走っている。

平成22年度の調査地点は、自動車排出ガス測定局の淀川工科高校(以下「淀工」と記す。)である。地点の近傍に目立った固定発生源はないが、前面には国道1号があり、平成22年度の全国道路・街路交通情勢調査(道路交通センサス)によると、昼間12時間の交通量は39,525台、大型車混入率が12.7%である。

調査地点の位置を図1.3-1-1、図1.3-1-2に示す。

図 1.3-1-1(1) 大阪府環境農林水産総合研究所(大阪市東成区中道 1-3-62)

図 1.3-1-1(2) 淀川工科高校(守口市京阪本通 2-62)

図 1.3-1-2 調査地点

1-3-2 分析項目

(1) PM2.5 濃度

PM2.5 ロウボリウムエアサンプラにより捕集した PM2.5 濃度。

(2) 金属類(18項目)

ナトリウム (Na)、マク゛ネシウム (Mg)、アルミニウム (A1)、カリウム (K)、カルシウム (Ca)、チタン (Ti)、ハ゛ナシ゛ウム (V)、クロム (Cr)、マンカ゛ン (Mn)、鉄 (Fe)、ニッケル (Ni)、銅 (Cu)、亜鉛 (Zn)、ヒ素 (As)、カト゛ミウム (Cd)、アンチモン (Sb)、ハ゛リウム (Ba) 及び鉛 (Pb)。

(3) イオン成分(9項目)

塩化物イオン(C1¯)、亜硝酸イオン(N0 $_2$ ¯)、硝酸イオン(N0 $_3$ ¯)、硫酸イオン(S0 $_4$ ²¯)、ナトリウムイオン(Na¯)、アンモニウムイオン(NH $_4$ ¯)、カリウムイオン(K¯)、マク¯ネシウムイオン(Mg²¯)及びカルシウムイオン(Ca²¯)。

(4) 炭素成分(3項目)

元素状炭素(EC)、有機性炭素(OC)、水溶性有機炭素(WSOC、平成22年度のみ)。

(5) 多環芳香族炭化水素類 (9項目、平成22年度のみ)

へ゛ンソ゛[a] ピ レン (BaP)、 ヘ゛ンソ゛[b] フルオランテン (BbF)、 ヘ゛ンソ゛[k] フルオランテン (BkF)、 ヘ゛ンソ゛[ghi] へ゜リレン (BghiP)、 ヘ゛ンソ゛[a] アントラセン (BaA)、 ヘ゛ンソ゛[e] ピ レン (BeP)、 ジ ベ ンソ゛[a, h] アントラセン (DBahA)、 インテ゛ノー(1, 2, 3-cd) ピ レン、 ヘ゛ンソ゛[j] フルオランテン (B iF)。

1-3-3 調査期間

調査は、四季毎に各季節 14 日間ずつ実施した。(原則として、日曜日から木曜日) 表 1.3-3 に試料捕集期間を示す。

表 1.3-3(1) 試料捕集期間 (平成 21 年度)

季節	日
春季	平成 22 年 3 月 29 日(月)~ 4 月 18 日(日)の間の 14 日間
夏季	平成 21 年 8 月 20 日(木)~ 9 月 9日(水)の間の 14 日間
秋季	平成 21 年 10 月 22 日(木)~11 月 12 日(木)の間の 14 日間
冬季	平成 22 年 1月 21日(木)~ 2月 10日(水)の間の 14日間

表 1.3-3(2) 試料捕集期間 (平成 22 年度)

季節	日
春季	平成 22 年 5 月 13 日(木)~ 6 月 2 日(水)の間の 14 日間
夏季	平成 22 年 8 月 5 日(木)~ 8 月 25 日(水)の間の 14 日間
秋季	平成 22 年 10 月 17 日(日)~11 月 5 日(金)の間の 14 日間
冬季	平成 22 年 2 月 3 日(木)~ 2 月 23 日(水)の間の 13 日間

1-3-4 調査実施機関

大阪府環境農林水産総合研究所環境情報部環境調査課

2 試料捕集方法及び分析方法

試料捕集及び分析は、「大気中微小粒子状物質 (PM2.5) 測定方法暫定マニュアル改訂版 (平成19年7月、環境省)」に準拠して実施した。

2-1 PM2.5の捕集

米国の標準測定法 (FRM) に準拠した PM2.5 ロウボリウムエアサンプラを2台用いて毎分16.7Lの流量で大気を23時間 (平成21年度は10時半から翌日9時半、平成22年度は11時半から翌日10時半(ただし冬季は12時から翌日11時))連続吸引し、テフロンろ紙及び石英繊維ろ紙上に PM2.5 を捕集した。(各季節14回)

なお、石英繊維ろ紙はろ紙に吸着した有機ガス等を除去するため 900℃で 3 時間加熱し、試料捕集までの間、冷凍庫で保管した。

試料捕集後のろ紙については、分析に供するまでの間、テフロンろ紙は冷蔵庫で、 石英繊維ろ紙は冷凍庫で保管した。

図 2.1-1 に試料捕集状況を、表 2.1-1 に捕集機器及びろ紙の仕様を示す。

図 2.1-1 試料捕集状況(上段:平成21年度、下段:平成22年度)

表 2.1-1(1) 捕集機器の仕様

項目	内容					
機種	Thermo Fisher Scientific 社製 FRM-2000					
分粒特性	10μmを 50%カット後 2.5μmを 50%カット					
吸引流量	16. 7L/min 流量制御機能付					
使用フィルタサイズ	φ 47mm					
外気温・気圧・フィルタ温度	測定および記録機能付					
フィルタ温度制御機能	フィルタ温度上昇抑制用換気機能付					
周囲温度	-40~50℃ (-20℃以下は保温が必要)					
電源	AC120V 2. 2A (昇圧トランス使用)					
本体サイズ	約 W410×D330×H610mm(突起部分を除く) 約 32kg					

表 2.1-1(2) ろ紙の仕様

	メーカ	WATMAN 社製 7592-104			
	ろ紙の材質	PTFE			
	ろ紙の厚さ	$40\pm10\mu\mathrm{m}$			
	ろ紙の直径	46. 2±0. 25mm			
 テフロンろ紙	ろ紙の孔径	最大 2 μ m			
アプロング心	サポートリングの材質	ポリプロピレン			
	サポートリングの総厚	0. 365±0. 055mm			
	サポートリングの幅	3. 68±0. 51mm			
	粒子保持能 (0.3μm)	最小 99. 7%			
	圧損 (0.3μm) @16. 7L/min	最大 30cmH ₂ 0			
	メーカ	アドバンテック東洋社製 QR-100			
	ろ紙の材質	高純度石英(99%以上)			
石英繊維ろ紙	ろ紙の厚さ	0. 38mm			
	ろ紙の直径	48mm			
	ろ紙の重量(標準値)	85g/m ²			
	粒子保持能 (0.3μm)	99. 99%			

2-2 分析方法

2-2-1 PM2. 5

テフロンろ紙を気温 21.5±1.5 $^{\circ}$ C、相対湿度 35±5%の条件下で恒量とし、試料の捕集前後に電子天秤(メトラー・トレド株式会社製 XP26)で 1μ g の単位まで秤量を行った。試料捕集前後の重量差と採気量より大気中の PM2.5 濃度(μ g/m³)を算出した。

なお、ろ紙は、捕集前は天秤室内で、捕集後は冷蔵庫内で保管した。

2-2-2 金属類

金属類は、マイクロウェーブ分解装置(マイルストーン社製 ETHOS1)を用いて前 処理を行い、誘導結合プラズマ質量分析法(ICP-MS 法)で定量した。

試料捕集したテフロンろ紙のサポートリング部をカット後、ろ紙の全量を専用の分解容器に入れ、フッ化水素酸 3mL、硝酸 6mL 及び過酸化水素水 (30%) 1mL を加え、密栓して、マイクロウェーブ分解装置で約55分間分解処理を行った。

冷却後、容器を開け、内容物、ふた等を温水で洗浄しながら、テフロンビーカーに移し入れた。ビーカ内の溶液をホットプレート上で乾固寸前まで加熱した後、硝酸 (2+98) で残渣を溶解洗浄し、ろ紙 (No.5B) でろ過した後、ポリメチルペンテン (PMP) 製の全量フラスコで 25mL 定容としたものを ICP-MS 法による測定に供した。このろ紙についても、使用前に硝酸 (2+98) 25m1 で洗浄したものを用いた。ICP-MS 法による金属類の測定条件を表 2.2-2 に示す。

測定結果と採気量より金属類の大気中濃度(ng/m³)を算出した。

なお、金属類の分析は、PM2.5 濃度が環境基準値(年平均値)である $15 \mu \text{ g/m}^3$ を超過したもののみ実施した。

表 2.2-2 ICP-MS 法による金属類の測定条件

機種	Agilent Technologies 社製 7500ce
RF周波数	27. 12 MHz
RF出力	1.2 kW
キャリアーAr ガス流量	1.0 L/min
プラズマ Ar ガス流量	15 L/min
サンプリング深さ	8.0 mm
測定元素 (質量数)	Na(23), Mg(24), Al(27), K(39), Ca(43), Ti(47),
	V(51), Cr(53), Mn(55), Fe(56), Ni(60), Cu(63),
	Zn(66)、As(75)、Cd(111)、Sb(121)、Ba(137)、
	Pb (208)
内標準元素 (質量数)	Li(7), In(115)

2-2-3 イオン成分

イオン成分は、イオンクロマトグラフ法で定量した。

試料捕集した石英繊維ろ紙の1/2をポリプロピレン製の試験管に入れ、超純水20mLを加え、20分間超音波抽出を行った。

ビーカ内の溶液をディスポーザブルフィルター(ミリポア社製 MILLEX-GS、孔径 0.22 μ m)でろ過後、ろ液をイオンクロマトグラフ(ダイオネクス社製 ICS2000(陰イオン)、ICS-1500(陽イオン))法による測定に供した。測定条件を表 2.2-3 に示す。

測定結果と採気量よりイオン成分の大気中濃度 (μg/m³) を算出した。

表 2.2-3(1) イオンクロマトグラフ法による陰イオン成分の測定条件

分離カラム	IonPac AS17-C
ガードカラム	IonPac AG17-C
溶離液	12mM 水酸化カリウム溶液
オートサプレッサー	ASRS-300 4mm
流量	1.0 mL/min
サンプル量	25 μ L
検出器	電気伝導度検出器

表 2.2-3(2) イオンクロマトグラフ法による陽イオン成分の測定条件

分離カラム	IonPac CS16
ガードカラム	IonPac CG16
溶離液	30mM メタンスルホン酸水溶液
オートサプレッサー	CSRS-UltraⅡ4mm
流量	1.0 mL/min
サンプル量	25 μ L
検出器	電気伝導度検出器

2-2-4 炭素成分

2-2-4 (1) 有機性炭素(OC) 及び元素状炭素(EC)

有機性炭素及び元素状炭素は、熱分離光学補正法で定量した。

試料捕集した石英繊維ろ紙を直径8mmのポンチでくり抜き、熱分離光学補正法(DRI 社製Carbon Analyzer) による測定に供した。

IMPROVE プロトコルにより段階的に昇温を行い、550℃までは He ガス雰囲気下で有機性炭素を、550℃からは He/ 0_2 (2%)ガス雰囲気下で元素状炭素をメタンに変換し、水素炎イオン化検出器 (FID) により検出した。

また、He ガス雰囲気下では、加熱による有機物の炭化が起こるため、有機性炭素の補正を行った。サンプルに対して垂直に He-Ne レーザーを照射して反射光を観測し、550 $^{\circ}$ $^{$

測定結果と採気量より大気中濃度 (μg/m³) を算出した。

試料分析炉		ОС	EC							
	温度(℃)	120, 250, 450, 550	550, 700, 800							
	雰囲気	雰囲気 He He (98%), 02 (2%)								
流速	He-1 : 40mL/	/min								
	He-2 : 10mL,	/min								
	He-3 : 50mL/	[/] min								
	10%0 ₂ /He : 10mL/min									
	Air: 350mL/min									
	$H_2:35mL/min$									
	5%CH ₄ /He : 2-5mL/min									
触媒	酸化炉 (900℃): MnO ₂									
	メタン化炉(420°C): Ni (NO₃) ₂·6H₂O									
検出器	水素炎イオ	ン化検出器(105℃)								

表 2. 2-4-1 元素状炭素及び有機性炭素の測定条件

表 2.2-4-2 炭素成分の名称

OC ₁₂₀	He 雰囲気中で室温から 120℃の間に揮発する有機性炭素
HOC	He 雰囲気中で 120℃から 550℃の間に揮発する有機性炭素に熱分解有機性炭素を加えたもの
OC	有機性炭素 [0C ₁₂₀ +H0C]
EC ₅₅₀	(He+02)雰囲気中で 550°Cで試料から発生する炭素から熱分解有機性炭素を除したもの
EC ₇₀₀	(He+02)雰囲気中で 700°Cで試料から発生する炭素
EC ₈₀₀	(He+02)雰囲気中で 800°Cで試料から発生する炭素
EC	元素状炭素 [EC ₅₅₀ +EC ₇₀₀ +EC ₈₀₀]
TC	全炭素 [0C+EC]

2-2-4(2) 水溶性有機炭素(WSOC)

水溶性有機炭素は、燃焼酸化-赤外線式 TOC 分析法で定量した。

イオン成分分析用に抽出操作を行った(2-2-3)ろ液の残りを燃焼酸化ー赤外線式 TOC 分析(島津社製 TOC-500) 法により、抽出液中の全炭素を定量した。TOC 計の燃料炉温度は 680° C、キャリアーガスは高純度空気で、試料注入量は $80\,\mu$ L とした。測定結果と採気量より水溶性有機炭素の大気中濃度 (μ g/m³) を算出した。

2-2-5 多環芳香族炭化水素類

多環芳香族炭化水素類は、溶媒抽出後、高速液体クロマトグラフ法(以下「HPLC 法」と記す。) で定量した。

試料捕集した石英繊維ろ紙の1/2から炭素成分分析用に直径8mmのポンチで3枚 くり抜いた残りのろ紙を10mLの共栓付試験管に入れ、ジクロロメタン10mLを加え、 30 分間超音波抽出を行った。数分間静置後、他の共栓付試験管に抽出液を約 7.0mL 分取し、5%水酸化ナトリウム溶液 2.0mL を加え、約1分間激しく撹拌した。数分間 静置後、上層部の水酸化ナトリウム溶液を取り除いた。

ジクロロメタン層 5.0mL を試験管に分取し、窒素気流中で溶媒の大部分を揮散さ せた後、アセトニトリルを加え、1.0mLに定溶し、10分間超音波により内容物を溶 解した。この溶液をディスポーザブルフィルター(ミリポア社製 MILLEX R-LG、孔径 0.20 μm) でろ過後、ろ液を HPLC 法による測定に供した。HPLC 法による多環芳香族 炭化水素類の測定条件を表 2-2-5 に示す。

HPLC 法による測定結果と採気量より多環芳香族炭化水素類の大気中濃度 (ng/m³) を算出した。

表 2-2-5 H	PLC 法による多環芳香族炭化水素類の測定条件							
機種	Agilent Technologies 社製 1200 シリーズ							
分離カラム	SUPELCOSIL LC-PAH(シグマアルドリッチ社製)							
	(長さ15cm×内径4.6mm×5μm)							
カラム温度	40°C							
移動相	メソット 1 0min アセトニトリル : 水 = 70 : 30							
	8min アセトニトリル : 水 = 70 : 30							
	31min アセトニトリル : 水 = 90 : 10							
	37min アセトニトリル : 水 = 90 : 10							
	37.01min アセトニトリル : 水 = 70 : 30							
	ストップ [°] タイム 41min							
	メソット 2 Omin アセトニトリル : 水 = 70 : 30							
	8min アセトニトリル : 水 = 70 : 30							
	31min アセトニトリル : 水 = 90 : 10							
	38min アセトニトリル : 水 = 90 : 10							
	38.01min アセトニトリル : 水 = 70 : 30							
	ストップ [®] タイム 42min							
流量	1.0 mL/min							
┃検出器 ┃	蛍光検出器 (FLD)							
検出波長	<i>メ</i> ソット [*] 1							
	A (B[a]P、B[ghi]P) 励起波長 365nm、 蛍光波長 410nm							
	B (B[a]A、B[e]P、B[b]F、B[k]F) 励起波長 280nm、 蛍光波長 410nm							
	C (DB[a,h]A) 励起波長 295nm、 蛍光波長 410nm							
	メソット゛2							
	A (indeno[1,2,3-c,d]P) 励起波長 380nm、 蛍光波長 500nm							
	B (B[j]F) 励起波長 315nm、 蛍光波長 500nm							

2-2-6 定量下限値

各成分の定量下限値は、ブランク溶液あるいは低濃度溶液を 5~10 回測定して得られた標準偏差(σ)の 10 倍相当濃度を環境大気中濃度に換算した値を用いた。

3 平成 22 年度調査結果

3-1 調査期間中の気象概況

調査期間中の気温等の気象状況を表 3.1-1に、天気図及び天気概況を表 3.1-2に示す。

表 3.1-1(1) 調査期間中の気象状況(春季)

調査日		風速	(m/s)			気温(℃)		湿度(%)	降水量	量(mm)	積算日射量	黄砂観測
(平成22年)	平均	最大	最小	最多風向	平均	最高	最低	平均	積算	最大時量	(MJ/m ²)	(有:O) ^{※1}
① 5月13日 (木)	2.2	4.4	0.8	NNW	14.5	18.9	12.0	49	0.0	0.0	20.53	
② 5月16日 (日)	1.9	4.3	静穏	W	20.5	24.7	16.4	59	0.0	0.0	24.20	
③ 5月17日 (月)	2.2	5.3	静穏	W	21.6	25.3	18.5	53	0.0	0.0	24.44	
④ 5月18日 (火)	2.6	4.8	1.1	NE	22.2	25.6	19.1	62	0.5	0.5	14.42	
⑤ 5月19日 (水)	1.4	2.5	0.4	NE	21.3	23.4	20.3	89	14.0	2.5	4.42	
⑥ 5月20日 (木)	1.2	3.5	0.3	W	21.6	25.6	17.7	76	0.0	0.0	12.57	
⑦ 5月23日 (日)	3.0	4.1	1.5	NE	18.5	20.2	17.3	83	84.5	14.5	3.00	21,22日〇
⑧ 5月24日 (月)	1.5	3.8	静穏	W	20.5	24.0	18.0	73	3.0	2.0	8.80	
⑨ 5月25日 (火)	2.9	5.0	0.4	WSW	20.6	26.4	17.5	64	1.5	1.0	17.94	0
⑩ 5月26日 (水)	2.5	4.2	1.4	NW	17.2	20.2	15.2	65	2.5	1.5	9.79	
① 5月27日 (木)	2.4	4.0	0.7	NNE	14.9	18.5	12.4	60	0.0	0.0	10.67	
① 5月30日 (日)	2.4	3.6	0.9	NNE	19.6	25.3	16.3	53	0.0	0.0	25.99	
③ 5月31日 (月)	2.1	3.8	1.4	NE	21.0	25.1	17.5	55	0.0	0.0	24.01	
(4) 6月1日 (火)	1.7	4.0	0.3	NE	20.5	24.9	17.4	64	0.5	0.5	15.21	
期間平均値	2.1	//			19.6			65	106.5		15.43	

^{※1:}大阪管区気象台発表

- 注1)風速・気温は守口保健所局(大阪府地域大気汚染常時監視測定データファイル(速報値))における12時から翌日10時までのデータ
- 注2)湿度・降水量・日射量は大阪管区気象台における12時から翌日10時までのデータ
- 注3)期間平均値欄の降水量は合計値を示す。
- 注4)「静穏」とは風速が0.3m/s未満であることを示す。

表 3.1-1(2) 調査期間中の気象状況(夏季)

調査日		風速	(m/s)			気温(℃)		湿度(%)	降水量	量(mm)	積算日射量	黄砂観測
(平成22年)	平均	最大	最小	最多風向	平均	最高	最低	平均	積算	最大時量	(MJ/m ²)	(有:O) ^{※1}
① 8月5日 (木)	2.2	4.1	0.5	W	30.6	34.3	28.3	64	0.0	0.0	19.58	
② 8月8日 (日)	2.1	3.8	0.5	ENE	30.1	33.7	26.8	60	0.0	0.0	20.39	
③ 8月9日 (月)	1.8	4.1	0.4	NE	28.7	33.0	26.4	73	3.0	3.0	10.44	
④ 8月10日 (火)	1.7	3.8	0.5	NNE	28.8	32.7	26.3	67	0.0	0.0	16.47	
⑤ 8月11日 (水)	3.1	5.2	1.7	SW	30.4	34.4	26.6	66	21.5	6.5	12.29	
⑥ 8月12日 (木)	1.5	3.9	0.4	WSW	28.8	31.1	26.1	71	0.0	0.0	8.84	
⑦ 8月15日 (日)	2.8	5.2	0.7	W	30.5	33.6	28.5	67	0.0	0.0	20.61	
⑧ 8月16日 (月)	1.9	4.1	0.3	W	31.2	34.5	28.4	61	0.0	0.0	21.37	
⑨ 8月17日 (火)	1.9	3.3	1.1	NE	31.8	35.5	28.0	56	0.0	0.0	22.35	
⑩ 8月18日 (水)	2.2	3.3	1.1	NE	32.6	37.2	29.0	56	0.0	0.0	21.68	
① 8月19日 (木)	2.0	3.2	1.2	ENE	32.0	36.9	28.4	61	0.0	0.0	17.08	
① 8月22日 (日)	1.9	3.3	0.7	W	31.6	35.2	29.0	64	0.0	0.0	18.32	
③ 8月23日 (月)	2.3	3.4	1.6	W	31.5	36.0	28.9	63	0.0	0.0	18.11	
(4) 8月24日 (火)	2.5	4.5	1.1	W	31.1	35.4	29.0	63	2.0	2.0	18.28	
期間平均値	2.1				30.7			64	26.5		17.56	

- ※1:大阪管区気象台発表
- 注1) 風速・気温は守口保健所局(大阪府地域大気汚染常時監視測定データファイル(速報値))における12時から翌日10時までのデータ
- 注2)湿度・降水量・日射量は大阪管区気象台における12時から翌日10時までのデータ
- 注3)期間平均値欄の降水量は合計値を示す。
- 注4)「静穏」とは風速が0.3m/s未満であることを示す。

表 3.1-1(3) 調査期間中の気象状況(秋季)

調査日		風速	(m/s)			気温(℃)		湿度(%)	降水量	量(mm)	積算日射量	
(平成22年)	平均	最大	最小	最多風向	平均	最高	最低	平均	積算	最大時量	(MJ/m ²)	(有:O) ^{※1}
① 10月17日 (日)	1.1	2.8	0.3	NNE	19.6	23.7	15.8	58	0.0	0.0	12.59	
② 10月18日 (月)	1.9	3.1	1.0	NE	20.5	24.7	17.1	47	0.0	0.0	11.24	
③ 10月19日 (火)	2.5	3.3	0.9	NE	21.9	24.8	20.5	60	0.0	0.0	8.22	
④ 10月20日 (水)	2.1	3.2	1.1	NNE	21.5	23.5	20.1	68	0.0	0.0	5.00	
⑤ 10月21日 (木)	1.8	3.0	0.7	NNE	20.2	22.1	18.7	62	0.0	0.0	5.58	
⑥ 10月24日 (日)	2.5	5.2	0.5	NE	19.1	23.1	17.2	79	6.5	2.0	4.83	
⑦ 10月25日 (月)	1.2	3.6	静穏	W	19.4	21.4	17.3	80	8.0	2.0	4.16	
⑧ 10月26日 (火)	2.4	4.5	1.1	NE	12.3	17.4	9.5	57	0.0	0.0	7.59	
⑨ 10月27日 (水)	2.6	4.1	1.7	NE	13.4	15.0	11.9	58	3.5	2.0	9.72	
⑩ 10月28日 (木)	1.4	2.5	0.4	NNE	14.7	17.6	13.1	73	1.0	0.5	3.58	
① 10月31日 (日)	1.3	2.2	静穏	NE	16.5	19.1	15.7	86	47.5	10.0	2.28	
⑫ 11月1日 (月)	2.3	4.5	0.6	W	15.1	18.7	11.7	54	0.0	0.0	6.42	
③ 11月3日 (水)	1.3	2.6	静穏	NE	12.8	17.2	9.0	59	0.0	0.0	12.58	
(4) 11月4日 (木)	1.1	2.8	0.4	NE	13.5	18.3	9.1	58	0.0	0.0	12.60	
期間平均値	1.8	//			17.2			64	66.5		7.60	

^{※1:}大阪管区気象台発表

- 注1) 風速・気温は守口保健所局(大阪府地域大気汚染常時監視測定データファイル(速報値))における12時から翌日10時までのデータ
- 注2)湿度・降水量・日射量は大阪管区気象台における12時から翌日10時までのデータ
- 注3)期間平均値欄の降水量は合計値を示す。
- 注4)「静穏」とは風速が0.3m/s未満であることを示す。

表 3.1-1(4) 調査期間中の気象状況(冬季)

調査日		風速	(m/s)			気温(℃)		湿度(%)	降水量	量(mm)	積算日射量	
(平成23年)	平均	最大	最小	最多風向	平均	最高	最低	平均	積算	最大時量	(MJ/m ²)	(有:O) ^{※1}
① 2月3日 (木)	0.9	2.1	静穏	W	7.0	11.6	2.9	52	0.0	0.0	11.83	
② 2月6日 (日)	1.4	2.9	0.3	W	9.7	13.5	6.6	53	0.0	0.0	9.21	
③ 2月7日 (月)	1.8	3.5	0.7	NE	6.5	11.6	2.8	56	0.0	0.0	7.40	
④ 2月8日 (火)	1.2	2.2	0.3	WNW	8.1	11.6	5.8	73	10.5	2.5	5.32	
⑤ 2月9日 (水)	2.0	3.5	0.7	NNW	6.2	9.7	3.9	59	1.0	1.0	7.84	
⑥ 2月13日 (日)	1.7	3.8	静穏	NE	3.0	6.1	0.8	60	0.0	0.0	7.07	
⑦ 2月14日 (月)	1.3	2.2	0.5	NE	2.6	5.9	0.9	82	13.0	3.0	4.26	
⑧ 2月15日 (火)	1.3	3.7	0.3	ENE	3.4	7.6	-0.2	60	0.0	0.0	10.35	
9 2月16日 (水)	1.5	3.4	静穏	NE	7.9	11.3	5.3	44	0.0	0.0	12.10	
⑩ 2月17日 (木)	2.3	4.2	1.4	NE	11.3	15.8	8.0	68	35.5	7.5	6.17	
① 2月20日 (日)	1.4	3.9	静穏	NNE	8.1	13.0	4.6	54	0.0	0.0	10.92	
⑫ 2月21日 (月)	1.8	3.7	1.0	ENE	7.8	13.9	3.8	52	0.0	0.0	15.12	
③ 2月22日 (火)	1.6	3.1	静穏	NE	11.0	15.9	7.1	49	0.0	0.0	14.85	
期間平均値	1.6				7.1			59	60.0		9.42	

※1:大阪管区気象台発表

- 注1) 風速・気温は守口保健所局(大阪府地域大気汚染常時監視測定データファイル(速報値))における12時から翌日10時までのデータ
- 注2)湿度・降水量・日射量は大阪管区気象台における12時から翌日10時までのデータ
- 注3)期間平均値欄の降水量は合計値を示す。
- 注4)「静穏」とは風速が0.3m/s未満であることを示す。

表 3.1-2(1) 調査期間中の天気図と天気概況(春季)

	₹3.1-2(1) 調査	期间中の大気凶 C	:天気概況(春季))
①5月13日(木)	5月14日(金)	②5月16日(日)	③5月17日(月)	④ 5月 18 日(火)
100 100 100 100 100 100 100 100 100 100	100 P	1004 1004 1004 1004 1004 1004 1004 1004	012 1006 (GE)	100 100 100 100 100 100 100 100 100 100
日本付近に寒気が入 り、日中の最高気温は 3月下旬~4月並。	移動性高気圧に覆われ、概ね晴れ。	移動性高気圧に覆わ れ、広い範囲で晴れ。	高気圧の中心は東に 抜けたが勢力が西に 張り出し広い範囲で 晴れ。	
⑤5月19日(水)	⑥5月20日(木)	5月21日(金)	⑦5月23日(日)	⑧ 5 月 24 日(月)
1022 1022 1022 1022 1022 1022 1022 1022	1012 1012 120H95	1014 1006 1014 1016 1014 1016 1014 1016 1014 1016 1016	123H08	1960 1960 1960 1960 1960 1960 1960 1960
西日本の南岸に前線 がのび、雨が続く。		範囲で晴れ。強い日差 しにより気温が上昇	低気圧と前線の影響 を受け、西日本では各 地で非常に激しい雨 を観測。	かく湿った空気が流
⑨5月25日(火)	⑩5月26日(水)	⑪5月27日(木)	5月28日(金)	⑫ 5月30日(日)
100 in 10	1016 1026 1026 1026 1026 1027 18	1020 1020 1020 1020 1020 1020 1020 1020	10 to	1006 1006 1006 1006 1006 1006 1006 1006
がる。九州〜近畿で黄	寒気が入り、大気の	大気の不安定な状態 が続き、本州の日本 海側や関東甲信で雨。	東・西日本の日本海側	高気圧に覆われて晴 れ。
⑬5月31日(月)	46月1日(火)	6月2日(水)		
1008 1008 1008 1008 1008 1008 1008 1008	1004 1004 1006 1006	1004 1004 1004 1004 1004 1004		
気の影響で、全国的に 低温続く。	5500m の上空に-15℃ の寒気が入り西日本 で大気の状態が不安 定となる。	高気圧に覆われ晴れ。		

※気象庁 HP 気象庁広報誌「こんにちは!気象庁です!」より引用。

[※]表中の丸囲み数字は試料捕集日を示す。

表 3.1-2(2) 調査期間中の天気図と天気概況(夏季)

	₹3.1-2(2) 調査	期間中の天気図と	: 天気概況(夏季))
①8月5日(木)	8月6日(金)	②8月8日(日)	③8月9日(月)	④8月10日(火)
The Holls	On the state of th	TO SHORE	1012 1018 1012 1012 1012 1012 1012 1012	3
が強まり日本付近を	日本付近は引き続き 太平洋高気圧に覆わ れ晴れて暑さが続く。	太平洋高気圧に覆われ、概ね晴れて真夏日 や猛暑日で残暑が続く。	台風第 4 号は宮古島 の東海上を通過し東 シナ海南部を北上。	全国的に残暑厳しい が、近畿〜関東は湿っ た空気の流入で所々 雷雨。
⑤8月11日(水)	⑥8月12日(木)	8月13日(金)	⑦8月15日(日)	⑧8月16日(月)
1000 DIAME	1000 1000 1000 1000 1000 1000 1000 100	1000 He 13H9H		1016 1016 1016 1016 1016 1016 1016 1016
	台風第 4 号は日本海 を東北東に進み、三陸 沖に抜ける。暖かく湿 った空気及び前線の 影響で曇り。	空気の影響で全国的	が強まり前線が北上。	太平洋高気圧に覆わ れ概ね晴れ。
⑨8月17日(火)	⑩8月18日(水)	⑪8月19日(木)	8月20日(金)	⑫ 8月22日(日)
1016 1016 1016	1018 1018 1018 1018 1018 1018	Tool Tool Tool Tool Tool Tool Tool Tool	100 House 120 House	1016 22Helth
太平洋高気圧に覆われ晴れ。	太平洋高気圧に覆わ れ全国的に晴れて猛 暑日。		日本付近は太平洋高 気圧に覆われ、よく晴 れ、西日本の各地で猛 暑日。	覆われ広く晴れて、
③8月23日(月)	48月24日(火)	8月25日(水)		
100 100 100 100 100 100 100 100 100 100	100 L	1000 125B9H		
高気圧に覆われ猛暑 日。南シナ海で台風第 5号が発生。		太平洋高気圧が西〜 東日本を広く覆い晴 れて各地猛暑が続く。		

※気象庁 HP 気象庁広報誌「こんにちは!気象庁です!」より引用。

[※]表中の丸囲み数字は試料捕集日を示す。

表 3.1-2(3) 調査期間中の天気図と天気概況(秋季)

<u>_</u>	₹3.1-2(3) 調査	期間中の天気図と	:天気概況(秋季))
①10月17日(日)	②10月18日(月)	③10月19日(火)	④10月20日(水)	⑤10月21日(木)
1 1015 MCI 12 ESM	T 1013 WCC1	1013 MC1 1050Hpc	1023 MCI	100 mm
気圧の谷の影響で、近 畿〜関東の太平洋側 は曇り。台風第13号 の21時の中心気圧 895hPa。			前線の影響で南西諸 島〜西・東日本太平 洋側で雨や曇り。	湿った気流が流れ込み、西〜東日本は厚い 雲に覆われ、太平洋側 を中心に雨。
10月22日(金)	⑥10月24日(日)	⑦10月25日(月)	⑧10月26日(火)	⑨10月27日(水)
1028 1024 1024 1024 1024 1024 1024 1024 1024	102 102 103 108 24BaH	108 108 109 108 108 108 108 108 108 108 108 108 108	1014 GABA (GI)	1014 Criaba 1017 980hp 102 27 8 9 H
西〜東日本は前線の 影響で曇りや雨。	低気圧が進んできた ため西日本から天気 が崩れ、関東以西で雨 や曇り。		冬型の気圧配置強ま る。近畿地方・東京地	強い寒気の影響で全 国的に今季最低気温。 南西諸島は台風第 14 号の影響で風雨強ま る。
⑩10月28日(木)	10月29日(金)	⑪10月31日(日)	⑫11月1日(月)	11月2日(火)
TOTAL CHARACTER STATE OF THE PROPERTY OF THE P	1000 (1000) (100	3.1898	1199	200
本州南岸の前線の影響で、広い範囲で雨。 気温が上がらず、最高 気温は広範囲で 12~ 1月並。	古風第 14 号の影響で 南西諸島や本州・四 国の太平洋側は雨や	気圧の谷や低気圧の 影響で、日中は西日本 を中心に雨。 台風第 14 号は関東東海上で 温帯低気圧に。	低気圧や日本海の低 気圧の影響で暑り	オホーツク海で低気 圧が発達し、冬型の気 圧配置に。太平洋側で は晴れ間が広がる。
⑬11月3日(水)	⑭11月4日(木)	11月5日(金)		
(A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	104 104 105 105 105 105 105 105 105 105 105 105	000		
	四・果日本では帯状の 高気圧に覆われ概ね 晴れ。	西日本〜東日本太平 洋側は、高気圧に覆わ れ爽やかな秋晴れが 広がる。	統計情報(地点:大阪管	

※気象庁 IIP 気象庁広報誌「こんにちは!気象庁です!」及び気象統計情報(地点:大阪管区気象台)より引用。 ※表中の丸囲み数字は試料捕集日を示す。

表 3.1-2(4) 調査期間中の天気図と天気概況(冬季)

	₹3.1-2(4) 調査	期间中の大気凶 C	: 天気概況(冬季 _.)
①2月3日(木)	2月4日(金)	②2月6日(日)	③2月7日(月)	④2月8日(火)
100 100 100 100 100 100 100 100 100 100	1002 1002 1002 1002 1002 1002 1002 1002	100 000 PM	100 THE STATE OF T	600 100 101 101 101 101 101 101 101 101
晴れて最高気温は3	広く高気圧に覆われ て晴れ。最高気温は3 月並の暖かさ。			低気圧の接近で西日 本は午後から雨。
⑤2月9日(水)	2月10日(木)	⑥2月13日(日)	⑦2月14日(月)	⑧2月15日(火)
本州南岸を通過した	西~東日本の太平洋	A HI O S I TA S TA D	低気圧が本州南岸に	低気圧は東海上へ。西
低気圧により太平洋 側で雨。西から天気は 回復し、日中の気温は ほぼ平年並。	側では晴れたが、夜、 九州南海上で低気圧	本の暴風・強風はおさまり、太平洋側は広く	沿って進み、沖縄・ 奄美〜東北にかけて 広範囲で雪や雨。大 阪 3cm の積雪。	区式圧は東海上へ。四日本から移動性高気 圧に覆われ、概ね晴れ。
	⑩2月17日(木)			⑫2月21日(月)
日本付近は、移動性高気圧に覆われ穏やかな天気となる。		一川へ。 での後冬型強ま	本州南海上の低気圧 の影響により太平洋 側で雲が広がる。	
気圧に覆われ穏やかな天気となる。	太平洋沿岸の発達中 の低気圧に暖かく湿った空気が流入した ため、西日本では午前 中から、強い雨。	低気圧が東海〜関東 の沿岸部を抜け三陸	本州南海上の低気圧 の影響により太平洋	日本付近は移動性高 気圧に覆われて広範
気圧に覆われ穏やか	太平洋沿岸の発達中 の低気圧に暖かく湿った空気が流入した ため、西日本では午前	低気圧が東海〜関東 の沿岸部を抜け三陸 冲へ。その後冬型強ま	本州南海上の低気圧 の影響により太平洋	日本付近は移動性高 気圧に覆われて広範
気圧に覆われ穏やかな天気となる。	太平洋沿岸の発達中の低気圧に暖かく湿った空気が流入したため、西日本では午前中から、強い雨。 2月23日(水)	低気圧が東海〜関東 の沿岸部を抜け三陸 冲へ。その後冬型強ま	本州南海上の低気圧 の影響により太平洋	日本付近は移動性高 気圧に覆われて広範

※気象庁 HP 気象庁広報誌「こんにちは!気象庁です!」より引用。

[※]表中の丸囲み数字は試料捕集日を示す。

【春季】

前半は高気圧に覆われて晴れる日が多く、後半は低気圧や前線、寒気の影響で曇りや雨の日が多かった。

調査期間をとおして、北から西よりの風が卓越した日が多く、日平均風速が 1.5 m/s 以下であった日は、5 月 19 日 (水) から 20 日 (木) 及び 5 月 24 日 (月) の 3 日間であった。調査期間中の平均風速は 2.1m/s であった。

気温については、調査期間中の平均値は19.6 $^{\circ}$ で、5月18日(火)は、日平均気温が22.2 $^{\circ}$ と最も高かった。寒気の影響で気温が下がったり、暖かい空気が入り気温が上がるなど、気温の変動が大きかった。湿度については、期間平均値は65%であった。

調査期間中に降水を観測したのは、5月 18日(火)から 19日(水)にかけてと 23日(日)から 26日(水)にかけて及び6月 1日(火)の 7日間であり、特に 23日(日)は、前線を伴った低気圧が通過し大雨となり、積算降水量が 84.5mm であった。また、総降水量は 106.5mm であった。積算日射量の期間平均は 15.43MJ/ m^2 であった。

調査期間中、5月21日(金)から22日(土)にかけてと25日(火)に気象庁で黄砂の飛来が 観測されている。

【夏季】

高気圧に覆われ、晴れて暑い日が多かった。

調査期間をとおして、西よりの風が卓越した日が多く、日平均風速が 1.5 m/s 以下であった日は、8 月 12 日 (木)の 1 日 のみであった。調査期間中の平均風速は 2.1 m/s であった。

気温については、8月17日(火)以降は日最高気温が35 $^{\circ}$ C以上となり、8月18日(水)は、日平均気温が32.6 $^{\circ}$ Cと最も高かった。調査期間中の平均値も30.7 $^{\circ}$ Cと高かった。湿度については、期間平均値は64 $^{\circ}$ であった。

調査期間中に降水を観測したのは、8月9日(月)、11日(水)及び 24日(火)の3日間であり、11日(水)は台風第4号の影響で雨となった。総降水量は 26.5 mm で、積算日射量の期間平均は $17.56 MJ/m^2$ であった。

【秋季】

気圧の谷や寒気の影響で曇りや雨の日が多かった。10月26日(火)は寒気の影響で一時 冬型の気圧配置となり、木枯らし1号がふいた。

調査期間をとおして、北よりの風が卓越した日が多く、日平均風速が 1.5 m/s 以下であった日は、10 月 17 日 (H)、25 H (H)、28 H (A)、31 H (H) 及び 11 H 3 H (A) から 4 H (A) にかけての 6 H 目であった。調査期間中の平均風速は 1.8 m/s であった。

気温については、期間前半は、寒気の影響がほとんどなく、気温が高い状態が続き、10月 19日(火)は、日平均気温が 21.9 $^{\circ}$ と最も高かった。調査期間中の平均値は 17.2 $^{\circ}$ で、湿度については、期間平均値は 64 $^{\circ}$ であった。

調査期間中に降水を観測したのは、10 月 24 日(日)から 25 日(月)、10 月 27 日(水)から 28 日(木)にかけて及び 10 月 31 日(日)の 5 日間であり、特に 31 日は、気圧の谷の影響を受けて大雨となり、積算降水量が 47.5mm であった。総降水量は 66.5mm であり、積算日射量の期間平均は 7.60MJ/m² であった。

【冬季】

天気は概ね数日の周期で変化した。2月14日(月)には、四国の南岸を東進した低気圧の 影響で雪となった。

調査期間をとおして、北から西よりの風が卓越した日が多く、日平均風速が 1.5 m/s 以下であった日は、2 月 3 日 (木) 、6 日 (日) 、8 日 (火) 、14 日 (月) から 16 日 (水) かけて 及び 20 日 (日) の 7 日 間 で あった 。調査期間中の平均風速は 1.6 m/s であった。

気温の変動が大きく、特に調査期間中頃は寒気の影響で気温が低くなった。日平均気温は2月14日(月)に2.6℃と最も低く、2月17日(木)に11.3℃と最も高かった。調査期間中の平均値は7.1℃で、湿度については、期間平均値は59%であった。

調査期間中に降水(雪)を観測したのは、2月8日(火)から9日(水)、14日(月)及び17日(木)の4日間であり、特に17日は、四国の南岸を東北東進しながら発達した低気圧の影響で、大雨となり、積算降水量が35.5mmであった。総降水量は60mmであり、積算日射量の期間平均は9.42MJ/m²であった。

3-2 PM2.5 濃度及び PM2.5 中の各種成分濃度の調査結果

3-2-1 PM2.5 濃度及び PM2.5 中の各種成分濃度

季節別の PM2. 5 濃度を表 3. 2-1 に、PM2. 5 中の各種成分濃度 (イオン成分 (NO_3^- 、 SO_4^{2-} 、 NH_4^+ 、及びその他イオン (6 項目))、炭素成分 (OC、EC)、その他成分 (PM2. 5 濃度からイオン成分及び炭素成分濃度を除したもの))の季節平均を図 3. 2-1-1 に、日平均を図 3. 2-1-2 に示す。また、PM2. 5 濃度に占める各種成分濃度の割合 (年度平均値)を図 3. 2-1-3 に示す。

なお、PM2.5 濃度及び各種成分濃度の分析結果は資料に示す。

- ・ PM2.5 濃度の季節平均値は、春季に $13 \mu \text{ g/m}^3$ 、夏季に $14 \mu \text{ g/m}^3$ 、秋季に $14 \mu \text{ g/m}^3$ 及び冬季に $24 \mu \text{ g/m}^3$ で、冬季に高かった。年度平均値は $16 \mu \text{ g/m}^3$ で、最高値は平成 $23 \pm 2 \neq 6 \pm 0.68 \mu \text{ g/m}^3$ であった。
- PM2.5/SPM 比の年度平均値は、0.68 であった。季節別にみると、春季・夏季に低く、秋季・冬季に高かった。
- ・ 環境基準の年平均値である $15 \mu \text{ g/m}^3$ を超過した日数は年間 56 日中 22 日で、環境 基準の日平均値である $35 \mu \text{ g/m}^3$ を超過した日数は 5 日であった。
- 環境省が実施した全国の自排局 5 地点の年度平均値(平成 20 年度)と比較すると、
 EC の割合が低く、SO₄²⁻及び OC の割合が高かった。[図 3.2-1-3]

表 3.2-1 季節別の PM2.5 濃度 (平成 22 年度淀工)

	15 μ g/m³ 超過日数	35 μ g/m³ 超過日数 ()内は PM2.5 濃度	期間平均値 (μ g/m³)	SPM 濃度 [※] (μg/m³)	PM2.5/SPM
春季	3 日	1日(46)	13	25	0.52
夏季	5 日		14	29	0.48
秋季	6日	1日(36)	14	16	0.88
冬季	8日	3 日 (44,68,36)	24	28	0.86
年間 (56 日)	22 日	5日	16	25	0.68

※大阪府地域大気汚染常時監視測定データファイル(速報値)より

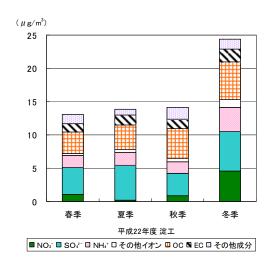


図 3.2-1-1 PM2.5 中の各種成分濃度(季節平均)

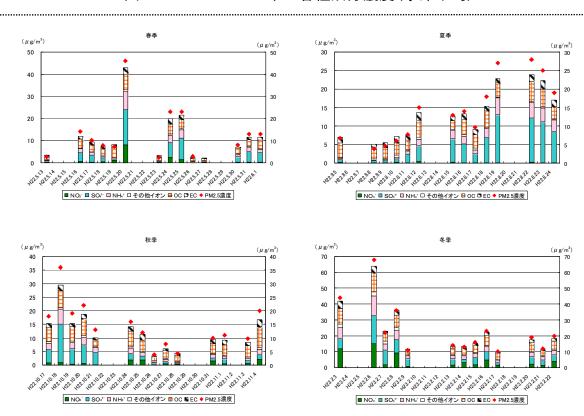


図 3.2-1-2 PM2.5 中の各種成分濃度(日平均、平成 22 年度淀工)

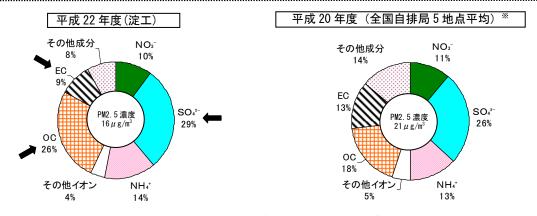


図 3.2-1-3 PM2.5 濃度に占める各種成分濃度の割合(年度平均値) ※環境省中央環境審議会大気環境部会微小粒子状物質環境基準専門委員会報告(平成 21 年 9 月)

3-2-2 金属類

分析を行った 18 項目のうち定量下限値未満であった Cr を除く 17 項目の PM2.5 中の金属類濃度及び PM2.5 濃度に占める割合の季節平均値を表 3.2–2 に示す。なお、金属類の分析は、PM2.5 濃度が環境基準値(年平均値)である $15\,\mu\,g/m^3$ を超過したもののみ実施したため、春季 3 日、夏季 5 日、秋季 6 日、冬季 8 日分のデータの平均値である。

また、金属類 (17 項目及びその合計) 濃度及び PM2.5 濃度に占める割合の日平均値 を図 3.2-2 に示す。

表 3.2-2 PM2.5 中の金属類濃度及び PM2.5 濃度に占める割合の季節平均値

),	農度(ng/m³	')			PM2.5濃	度に占める	割合(%)	
	春季	夏季	秋季	冬季	年度	春季	夏季	秋季	冬季	年度
K	180	83	170	320	210	0.55	0.37	0.64	0.95	0.72
Fe	210	39	140	180	140	0.54	0.13	0.46	0.66	0.53
Na	120	64	130	140	110	0.41	0.20	0.54	0.51	0.47
Zn	71	32	54	75	59	0.21	0.12	0.21	0.26	0.22
Ca	55	16	52	86	57	0.16	0.058	0.17	0.32	0.22
Al	62	16	42	62	46	0.18	0.058	0.17	0.19	0.17
Mg	27	13	21	36	25	0.079	0.048	0.088	0.12	0.095
Pb	21	12	23	28	22	0.063	0.047	0.086	0.094	0.082
Mn	21	3.9	14	20	15	0.055	0.014	0.043	0.074	0.055
Cu	13	4.1	8.4	16	11	0.038	0.0095	0.034	0.054	0.041
Ва	11	4.5	4.2	15	9.3	0.033	0.019	0.020	0.047	0.033
Ti	7.4	2.2	4.9	5.4	4.8	0.022	0.0080	0.017	0.019	0.018
V	7.5	7.5	1.4	4.3	4.7	0.021	0.030	0.017	0.011	0.017
Sb	2.8	0.94	2.1	3.1	2.3	0.0082	0.0032	0.0075	0.011	0.0087
Ni	3.4	2.2	0.89	2.4	2.1	0.0094	0.0076	0.0063	0.0075	0.0075
As	2.3	0.77	1.6	2.7	1.9	0.0059	0.0033	0.0059	0.0081	0.0065
Cd	0.53	0.18	0.37	0.55	0.41	0.0013	0.00078	0.0014	0.0015	0.0014
金属類合計	810	300	670	990	720	2.4	1.1	2.5	3.3	2.7
PM2.5濃度 (μg/m³)	31	23	22	31	27					

注) PM2.5 濃度が 15 μg/m³以上であった春季 3 日、夏季 5 日、秋季 6 日、冬季 8 日分のデータの平均値。

- ・金属類濃度(17項目合計)は、日平均値が $200\sim2000$ ng/m³程度と日によりばらつきがあったが、PM2.5濃度に占める割合は $1\sim5$ %程度とばらつきが少なくPM2.5濃度と濃度変動が類似していた。季節平均でみると、PM2.5濃度に占める割合は冬季に高く、夏季に低かった。項目別でも、VとNiを除き、夏季に低い傾向があった。
- ・ 廃棄物焼却及び植物燃焼粒子の指標元素である K は金属類の中で濃度が最も高かった (年度平均値 210ng/m³)。日平均値及び PM2.5 濃度に占める割合は平成 23 年 2 月 6 日から8 日にかけて高く、平成 23 年 2 月 6 日は 890 ng/m³と最高値を示した。 PM2.5 濃度に占める割合は平成 23 年 2 月 7 日に 2.0%と最も高く、これらの日以外は 0.5~1%程度であった。季節平均でみると、夏季は、濃度も PM2.5 濃度に占める割合も他の季節に比べ低かった。
- ・ 石油燃焼粒子の指標元素である V、Ni 濃度の PM2.5 濃度に占める割合は他の項目と 異なり、秋季・冬季に比べ春季・夏季に高かった。さらに、V 濃度の PM2.5 濃度に 占める割合は、8月22日から24日にかけて約0.040%(年度平均0.017%)で全 期間を通じて最も高かった。
- 平成23年2月6日はPM2.5濃度が68μg/m³と最高値を示し、平成23年2月3日は3番目に高く44μg/m³であった。金属類濃度はTiを除きこの2日間に最高値を示した。平成23年2月3日はFe、Zn、Mn、Cu、V、Sb、Ni濃度が最も高く、特にCu濃度は年度平均値の約4倍であった。平成23年2月6日はK、Na、Ca、Al、Mg、Pb、Ba、As、Cd 濃度が最も高く、特にK、Cd 濃度は年度平均値の約4倍であった。

図 3.2-2(1) 金属類濃度及び PM2.5 濃度に占める割合の日平均値(平成 22 年度淀工)



図3.2-2(2) 金属類濃度及びPM2.5濃度に占める割合の日平均値(平成22年度淀工)

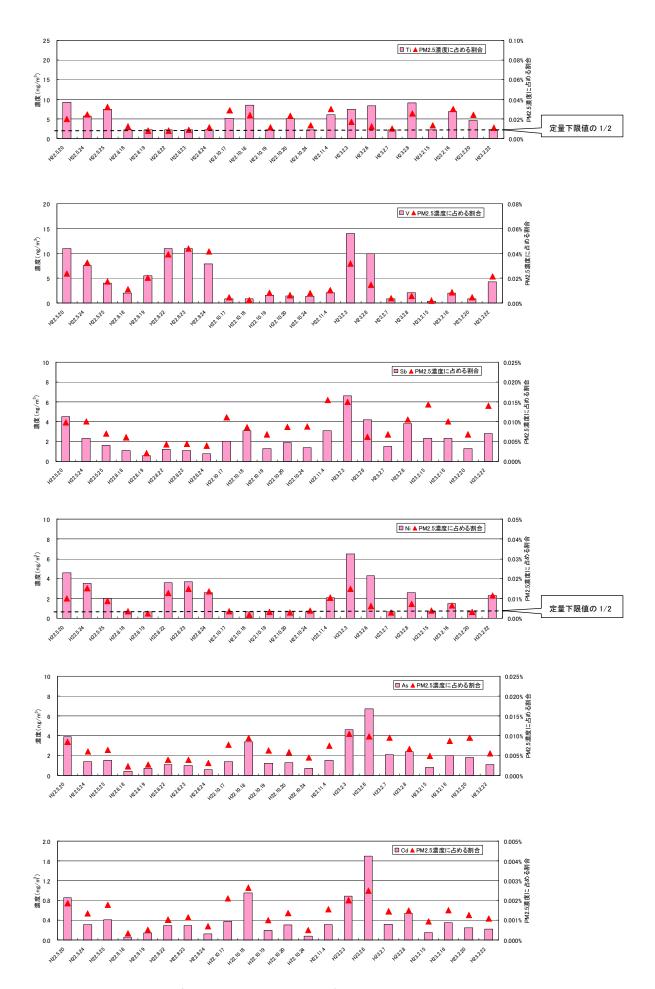
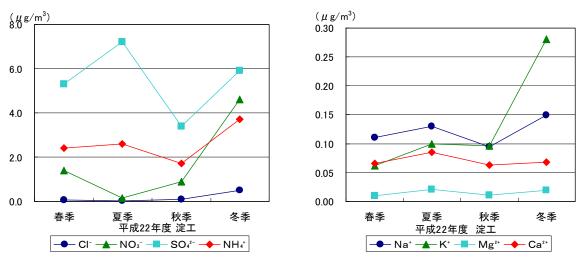
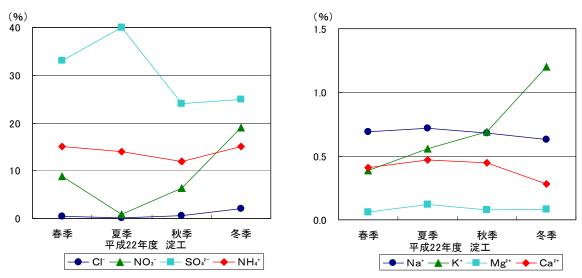



図 3.2-2(3) 金属類濃度及び PM2.5 濃度に占める割合の日平均値(平成 22 年度淀工)

3-2-3 イオン成分


分析を行った 9 項目のうちほとんどが定量下限値未満であった NO_2 を除く 8 項目の PM2. 5 中のイオン成分濃度及び PM2. 5 濃度に占める割合の季節平均値を図 3. 2-3-1 に 日平均値を図 3. 2-3-2 に示す。

なお、「大気中微小粒子状物質 (PM2.5) 測定方法暫定マニュアル改訂版 (平成 19年7月、環境省)」に示されているマスクロージャーモデルの手法を用いて異常値判定を行ったところ、5月13、19、23、27日 (春季)、8月5、8、9、10日 (夏季)のデータは、非常に低濃度であったこともあり範囲から外れていたため、解析対象外とした。

注) 5月13、19、23、27日(春季)、8月5、8、9、10日(夏季)のデータは平均値から除外している。

図 3.2-3-1(1) イオン成分濃度の季節平均値

注) 5月13、19、23、27日(春季)、8月5、8、9、10日(夏季)のデータは平均値から除外している。

図 3.2-3-1(2) イオン成分濃度の PM2.5 濃度に占める割合 (季節平均値)

- ・ $C1^-$ と $N0_3^-$ は濃度変動が類似しており、夏季に低く、冬季に高かった。これは、気温の高い時期にはガス状で存在し、逆に気温の低い時期には粒子化しているためと考えられる。
- ・ Cl⁻は、PM2.5 濃度に占める割合が冬季は2.1%と他の季節(0.18~0.65%)に比べ高かった。日平均値は平成23年2月3日に最高値(1.6 μ g/m³)を示し、PM2.5 濃度に占める割合も3.6%と二番目に高かった。
- ・ NO_3 は、PM2.5 濃度に占める割合が冬季は 19%と他の季節 $(0.89\sim8.8\%)$ に比べ顕著に高かった。日平均値は平成 23 年 2 月 6 日に最高値 $(15\,\mu\,\mathrm{g/m}^3)$ を示し、PM2.5 濃度に占める割合は平成 23 年 2 月 3 日に 27% と最も高かった。
- ・ SO_4^2 はすべての季節において、濃度も PM2.5 濃度に占める割合も各イオン成分の中で最も高かった。 SO_4^2 濃度の PM2.5 濃度に占める割合は、秋季、冬季、春季、夏季の順で、夏季は 40%であった。
- ・ SO_4^2 濃度は $0.33\sim18\,\mu\,g/m^3$ と日変動が大きく、PM2.5 濃度に占める割合も日平均では $9.0\sim43\%$ と変動が大きかった。日平均値は平成 23 年 2 月 6 日に最高値(18 $\mu\,g/m^3$)を示し、PM2.5 濃度に占める割合は平成 22 年 5 月 25 日及び平成 23 年 2 月 9 日に 43% と最も高かった。
- ・ 秋季の SO_4^2 -濃度の割合は、期間前半の 10 月 21 日までは $30\sim40\%$ 程度と高かったが、期間後半の 24 日以降は $10\sim20\%$ であった。 3-1 で述べたとおり、期間前半は寒気の影響がなく気温が高い状態が続いていたが、期間後半は冬型の気圧配置となった。硫酸塩は一般に光化学反応が活発に行われる夏季に生成されやすいといわれており、この気象の変化が割合の変化に影響していると考えられる。
- ・ NH_4 +濃度は、日変動が大きく、日平均値は平成 23 年 2 月 6 日に最高値($12 \mu g/m^3$)を示し。冬季の季節平均値($3.7 \mu g/m^3$)は、他の季節に比べると高かった。一方、 PM2.5 濃度に占める割合は、日変動も季節変動も小さく、季節平均は $12\sim15\%$ であった。
- ・ Na⁺濃度は、季節変動が小さく、季節平均値は秋季に $0.095 \,\mu\,\mathrm{g/m^3}$ と最も低く、冬季に $0.15 \,\mu\,\mathrm{g/m^3}$ と最も高かった。PM2.5 濃度に占める割合は、季節変動がほとんどなく、0.7%程度であった。日平均値は平成 23 年 2 月 6 日に最高値 $(0.26 \,\mu\,\mathrm{g/m^3})$ を示した。
- ・ K^+ は、前述の K と同様の傾向を示し、日平均値及び PM2.5 濃度に占める割合は平成 23 年 2 月 6 日から 8 日にかけて高く、平成 23 年 2 月 6 日は 1.1 μ g/m^3 と最高値を示した。PM2.5 濃度に占める割合は平成 23 年 2 月 7 日に 2.7%と最も高く、これらの日以外は 0.5~1%程度であった。季節平均でみると、濃度も PM2.5 濃度に占める割合も、春季に低く、冬季に高かった。
- ・ Ca^{2+} 濃度は、季節変動が小さく、年間平均値は $0.070\,\mu\,g/m^3$ であった。日平均値は 平成 23 年 8 月 19 及び 22 日に最高値($0.16\,\mu\,g/m^3$)を示した。
- ・ 前述の金属類と同様に、PM2.5 濃度が最高値($68 \mu g/m^3$)を示した平成 23 年 2 月 6 日と3番目($44 \mu g/m^3$)に高かった平成 23 年 2 月 3 日に、イオン成分濃度は最高値を示した。平成 23 年 2 月 3 日は C1 濃度が最も高く、冬季の平均値の約 3 倍であった。平成 23 年 2 月 6 日は C1 以外のイオン成分濃度が最も高かった。

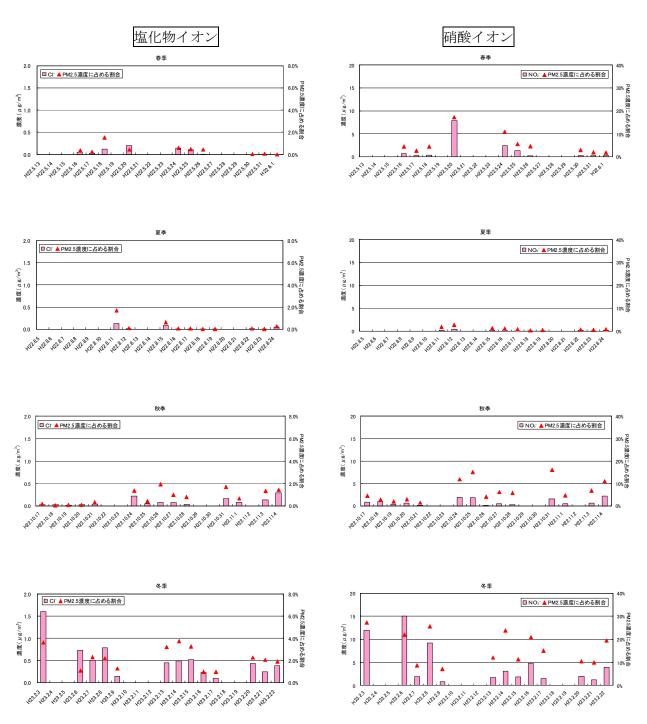


図 3.2-3-2(1) イオン成分濃度及び PM2.5 濃度に占める割合の日平均値

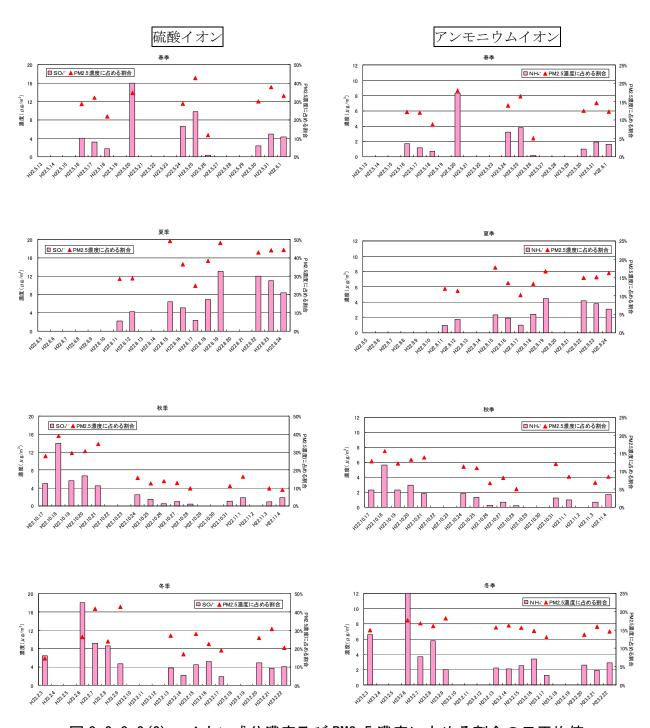


図 3.2-3-2(2) イオン成分濃度及び PM2.5 濃度に占める割合の日平均値

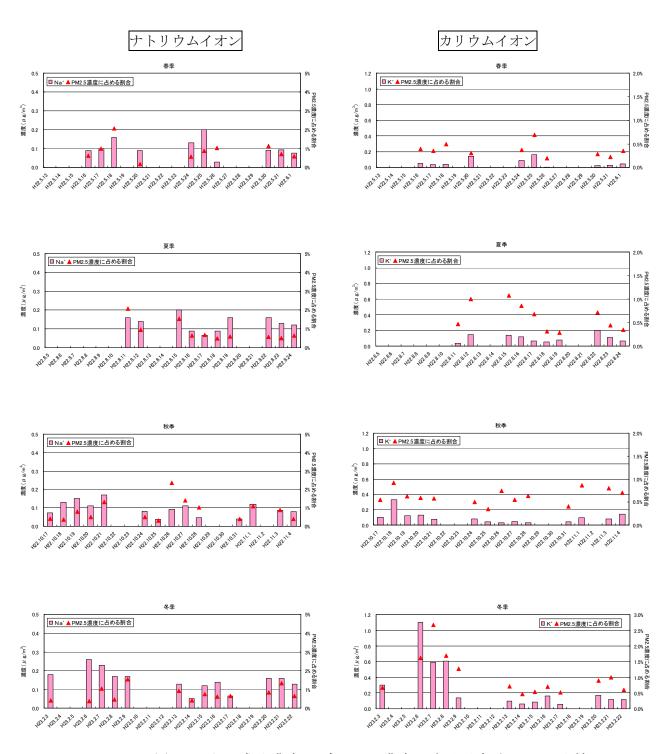


図 3.2-3-2(3) イオン成分濃度及び PM2.5 濃度に占める割合の日平均値

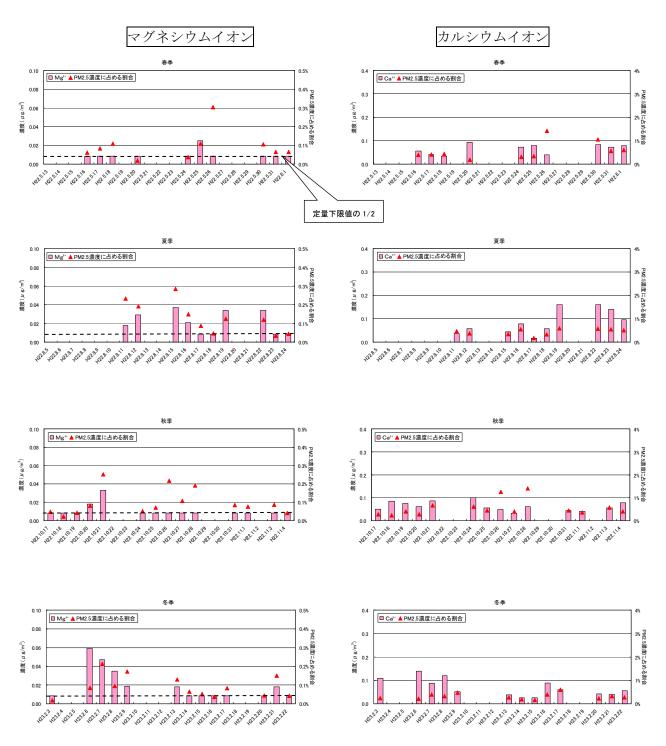
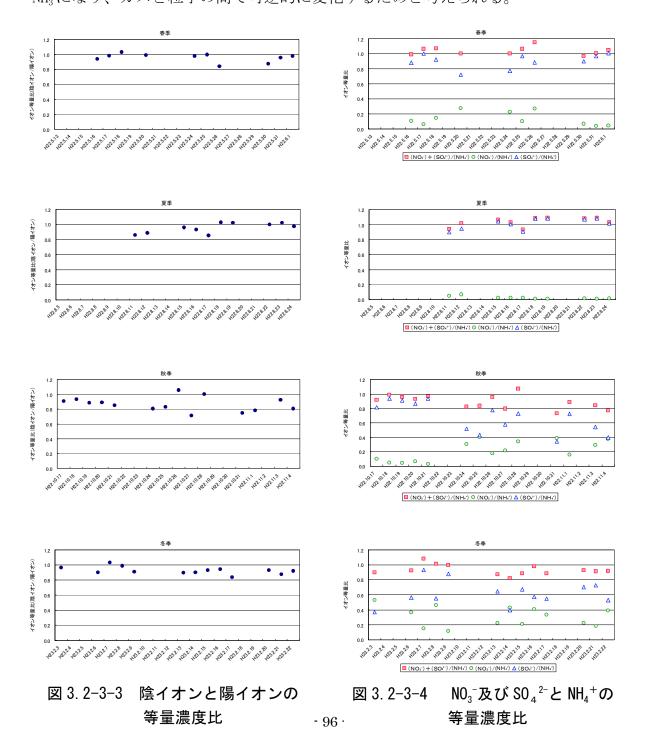
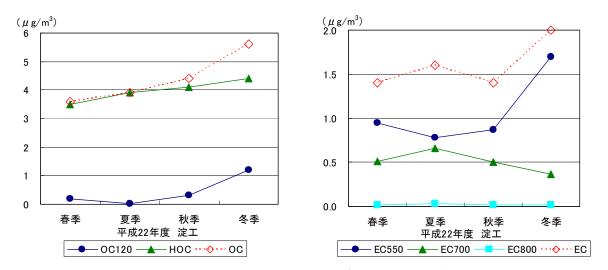



図 3.2-3-2(4) イオン成分濃度及び PM2.5 濃度に占める割合の日平均値

陰イオン $(C1^-, N0_2^-, N0_3^-, S0_4^{2-})$ と陽イオン $(NH_4^+, Na^+, K^+, Mg^{2+}, Ca^{2+})$ の等量濃度比を図 3. 2-3-3 に $N0_3^-$ 及び $S0_4^{2-}$ と NH_4^+ の等量濃度比を図 3. 2-3-4 に示す。

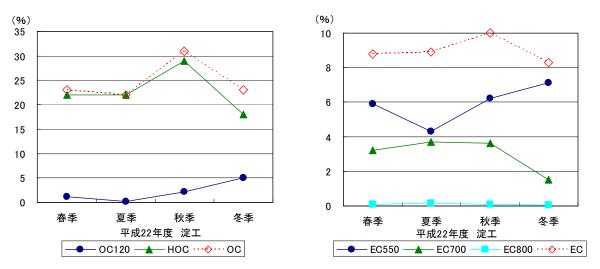
陰イオンと陽イオンの等量濃度比はどの季節も概ね0.8~1.2の範囲にあった。

また、 $(NO_3^- 及び SO_4^{2-})$ と NH_4^+ の等量濃度比もどの季節においても概ね $0.8 \sim 1.2$ の範囲にあり、PM2.5 粒子中で NH_4^+ は NH_4NO_3 及び $(NH_4)_2SO_4$ として存在していると考えられる。春季は 8 割以上が $(NH_4)_2SO_4$ で、期間の終わり頃はほとんどが $(NH_4)_2SO_4$ で、夏季もほとんどが $(NH_4)_2SO_4$ であった。秋季は期間の前半は $(NH_4)_2SO_4$ が多く、後半は NH_4NO_3 の割合が増加した。冬季は秋季後半と類似しており、 $(NH_4)_2SO_4$ が多い日と NH_4NO_3 と $(NH_4)_2SO_4$ が同程度存在する日が混在し、 NH_4NO_3 が多い日は平成 23 年 2 月 3 日のみであった。気温の高い時期に NH_4NO_3 が少ないのは、 NH_4NO_3 は、温度が上がると再び HNO_3 と NH_3 になり、ガスと粒子の間で可逆的に変化するためと考えられる。



3-2-4 炭素成分

3-2-4(1) 有機性炭素(OC) 及び元素状炭素(EC)


PM2.5 中の炭素成分濃度及び PM2.5 濃度に占める割合の季節平均値を図 3.2-4-1 に 日平均値を図 3.2-4-2 に示す。(炭素成分の名称は表 2.2-4-2 を参照)

なお、前述 (3-2-3) の理由により、5月13、19、23、27日(春季)、8月5、8、9、10日(夏季)のデータは、解析対象外とした。

注) 5月13、19、23、27日(春季)、8月5、8、9、10日(夏季)のデータは平均値から除外している。

図 3.2-4-1(1) 炭素成分濃度の季節平均値

注) 5月13、19、23、27日 (春季)、8月5、8、9、10日 (夏季) のデータは平均値から除外している。

図 3.2-4-1(2) 炭素成分濃度の PM2.5 濃度に占める割合 (季節平均値)

有機性炭素 (0C) のうち、120 でまでに揮発するものを揮発性有機炭素 $(0C_{120})$ 、0C から $0C_{120}$ を除したものを高温有機性炭素 (HOC) とする。一方、元素状炭素 (EC) のうち、550 で、700 で及び 800 で発生する炭素を EC_{550} 、 EC_{700} 及び EC_{800} とする。 EC_{550} は木材や食品廃棄物などのバイオマス燃焼で生成した炭化物、 EC_{700} はディーゼル排気粒子、 EC_{800} はカーボンブラックであると報告されている(Han, Y. et.al., 2007)。

- ・ OC 濃度は平成 23 年 2 月 3 日及び 6 日に高く、 $10 \mu \text{ g/m}^3$ 以上となり、季節平均値も冬季に最も高かった。PM2. 5 濃度に占める割合は、日平均では $14\sim48\%$ と変動が大きく、季節平均すると、他の季節($22\sim23\%$)に比べ秋季に高かった(31%)。秋季は、期間の前半と後半で割合が異なり、期間の前半は $20\sim30\%$ 程度であったが、期間の後半は $35\sim45\%$ 程度であった。
- ・ 0C 中に含まれる 0C₁₂₀ は春季から秋季にかけてはわずかで、ほとんどが HOC であった。
- ・ HOC 濃度は平成 23 年 2 月 6 日に最高値 $(10 \, \mu \, g/m^3)$ を示し、季節平均値も冬季に最も高かった。PM2.5 濃度に占める割合は、季節平均すると、秋季に最も高く、春季及び夏季、冬季の順であった。
- ・ **OC**₁₂₀ は、濃度も PM2.5 濃度に占める割合も、日変動が大きく、季節平均すると、 冬季に高く、夏季に低かった。これは、OC₁₂₀ が気温の高い時期にはガス状で存在 し、逆に気温の低い時期には粒子化しているためと考えられる。
- ・ ディーゼル排気粒子の指標である EC 濃度は、平成 23 年 2 月 3 日に最高値(4.6μ g/m³)を示し、季節平均値も他の季節に比べ冬季に高かった。PM2.5 濃度に占める割合は、日変動は $4.4 \sim 20\%$ と大きかったが、季節平均すると、どの季節も 9%程度であった。
- ・ EC 中に含まれる EC_{800} はわずかであった。一方、 EC_{550} と EC_{700} に関しては、夏季は濃度が同程度であったが、他の季節は EC_{550} 濃度が EC 中で最も高かった。
- ・ EC_{550} 濃度は、日変動が大きかったが、季節平均すると、濃度も PM2.5 濃度に占める割合も、冬季に高く、夏季に低かった。
- ・ EC_{700} 濃度も日変動が大きく、季節平均すると、 EC_{550} とは逆で、夏季に高く、冬季に低かった。PM2.5 濃度に占める割合は他の季節に比べ冬季に最も低かった。
- ・ 前述の金属類及びイオン成分と同様に、PM2.5 濃度が最高値($68 \mu g/m^3$)を示した 平成 23 年 2 月 6 日と 3 番目($44 \mu g/m^3$)に高かった平成 23 年 2 月 3 日に、0C 及び EC 濃度は最高値を示した。平成 23 年 2 月 3 日は $0C_{120}$ 及び EC 濃度が最も高く、 平成 23 年 2 月 6 日は HOC 濃度が最も高かった。一方、EC 濃度は、平成 23 年 8 月 11 日に最高値を示し、この 2 日間は濃度が低かった。

図 3.2-4-2(1) 炭素成分濃度及び PM2.5 濃度に占める割合の日平均値

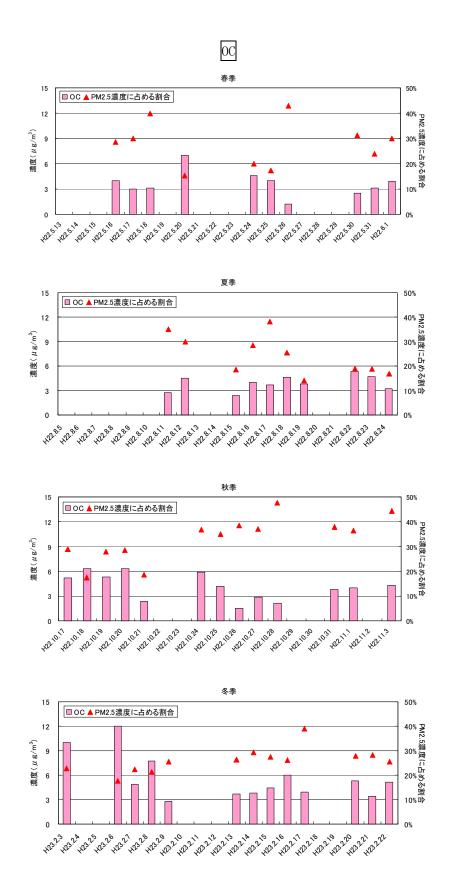


図 3.2-4-2(2) 炭素成分濃度及び PM2.5 濃度に占める割合の日平均値

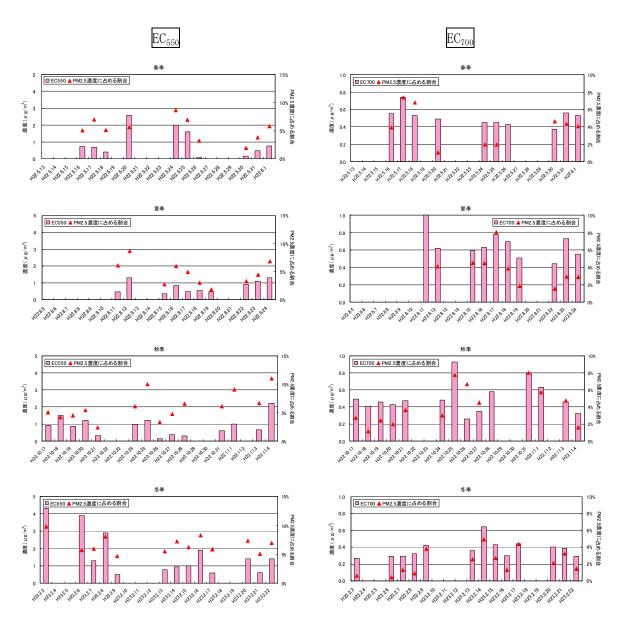


図 3.2-4-2(3) 炭素成分濃度及び PM2.5 濃度に占める割合の日平均値

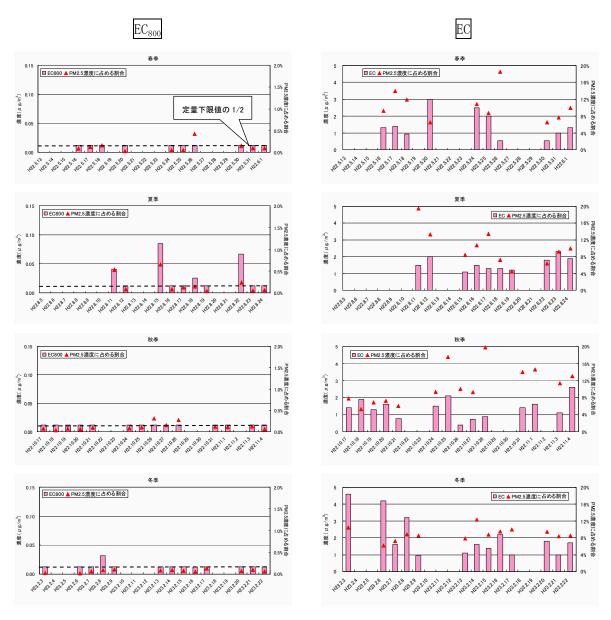
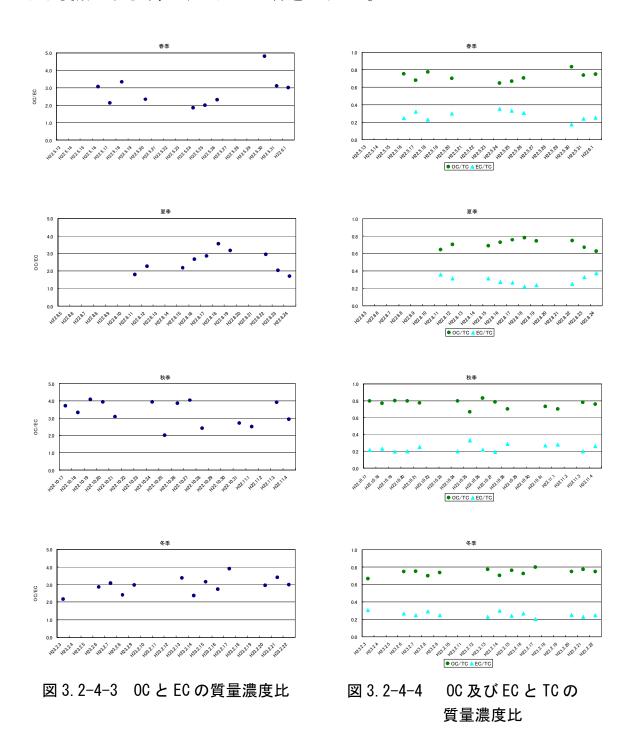
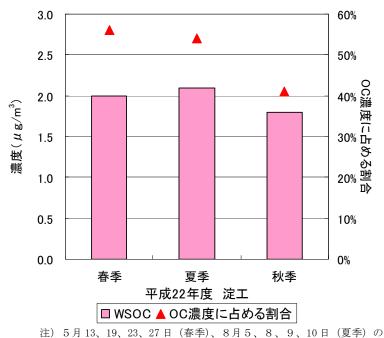



図 3.2-4-2(4) 炭素成分濃度及び PM2.5 濃度に占める割合の日平均値

0C と EC の質量濃度比を図 3.2-4-3 に 0C 及び EC と TC(0C+EC)の質量濃度比を図 3.2-4-4 に示す。

0C EC の質量濃度比は日変動が大きく $2\sim5$ の範囲にあった。一方、0C/TC 及びEC/TC は日変動が小さく、EC/TC は 0.25 付近であった。

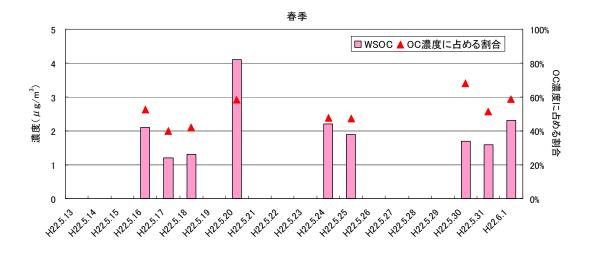


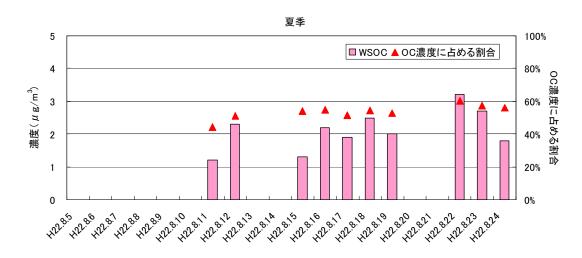
3-2-4(2) 水溶性有機炭素(WSOC)

図 3.2-4-5

WSOC 濃度及び OC 濃度に占める割合の季節平均値を図 3.2-4-5 に日平均値を図 3.2-4-6 に示す。

なお、前述 (3-2-3) の理由により、5月13、19、23、27日 (春季)、8月5、8、9、10日 (夏季) のデータは、解析対象外とした。また、冬季は装置の故障により分析ができなかったため欠測である。




データは、平均値から除外している。

WSOC 濃度及び OC 濃度に占める割合の季節平均値

光化学反応により二次生成される有機粒子の成分としては、ジカルボン酸が多いことが報告されている (Satsumabayashi et. al., 1990, 河村, 2006,)。また、WSOC は有機炭素のうち、水溶性のもので、酸化された有機粒子の多くが含まれると報告されている (Miyazaki et. al., 2006, 近藤ら, 2006, Kondo et. al., 2007, Kondo et. al., 2010)。以上の報告から、二次生成有機粒子全体の指標として、WSOC を用いた。

- ・WSOC 濃度の季節平均値は春季・夏季に比べ、秋季にやや低かった。OC 濃度に占める割合の季節平均値も、春季(56%)・夏季(54%)に比べ、秋季は41%と低く、 光化学反応が活発な春季・夏季の方が有機粒子に占める二次生成有機粒子の割合が多いと考えられる。
- ・ WSOC 濃度の OC 濃度に占める割合の日平均値は、平成 22 年 5 月 30 日に 68%と最高値を示した。春季・秋季は日変動が大きかったが、夏季は季節平均値である 54% 前後で安定していた。
- ・WSOC 濃度の OC 濃度に占める割合の日平均値は、秋季は期間の前半に比べ、後半に低かった。同様に光化学反応により生成するといわれている SO₄²⁻濃度の PM2.5 濃度に占める割合も、秋季は期間の前半に比べ、後半に低かった。表 3.1-2 に示す天気図をみると、期間の後半である平成 22 年 10 月 24 日から冬型の気圧配置となっており、気圧配置の変化により光化学反応活性が変化したことが考えられる。

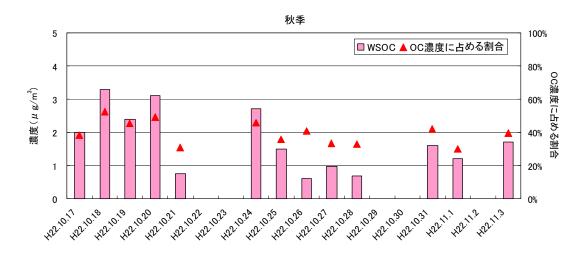
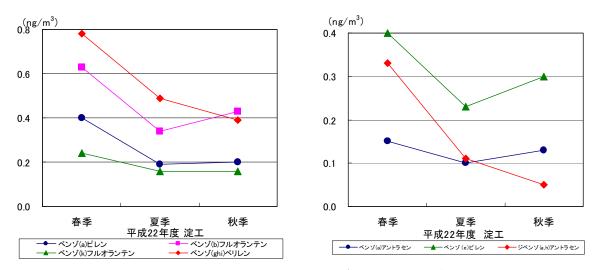
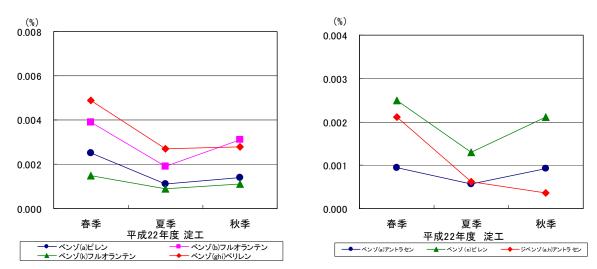



図 3.2-4-6 WSOC 濃度及び OC 濃度に占める割合の日平均値

3-2-5 多環芳香族炭化水素類


ほとんどの値が定量下限値未満であったインデノ-[1, 2, 3-cd]ピレン及びベンゾ[j]フルオランテンを除く PM2. 5 中の多環芳香族炭化水素類濃度及び PM2. 5 濃度に占める割合の季節平均値を図 3.2-5-1 に日平均値を図 3.2-5-2 に示す。

なお、前述 (3-2-3) の理由により、5月13、19、23、27日 (春季)、8月5、8、9、10日 (夏季)のデータは、解析対象外とした。また、冬季は試料を別の分析に使用し分析ができなかったため欠測である。

注) 5月13、19、23、27日(春季)、8月5、8、9、10日(夏季)のデータは平均値から除外している。

図 3.2-5-1(1) 多環芳香族炭化水素濃度の季節平均値

注) 5月13、19、23、27日(春季)、8月5、8、9、10日(夏季)のデータは平均値から除外している。

図 3.2-4-1(2) 多環芳香族炭化水素濃度の PM2.5 濃度に占める割合 (季節平均値)

- ・ 濃度の上位2項目は、ベンゾ[ghi]ペリレン及びベンゾ[b]フルオランテンであり、 前述のアンダーセンサンプラーで捕集した微小粒子と同様の結果が得られた。
- ・ 平成 22 年 5 月 30 日は全ての項目において濃度が高く、特に、ジベンゾ [a,h] アントラセンは年度平均値の 17 倍であった(他の項目は $3 \sim 7$ 倍)。この日は、前述(3-2-4 (2))のとおり WSOC 濃度の 0C 濃度に占める割合が最高値を示したが、PM2.5 濃度は 8.0μ g/m³ と低く、他の項目については特徴がなく、高濃度の原因は不明である。
- ・ ベンゾ[ghi]ペリレンとジベンゾ[a,h]アントラセンは、濃度も PM2.5 濃度に占める割合も秋季に最も低く、その他の項目は、夏季に最も低かった。
- ・ 全ての項目において、夏季は春季・秋季に比べ、濃度の日変動が小さかった。

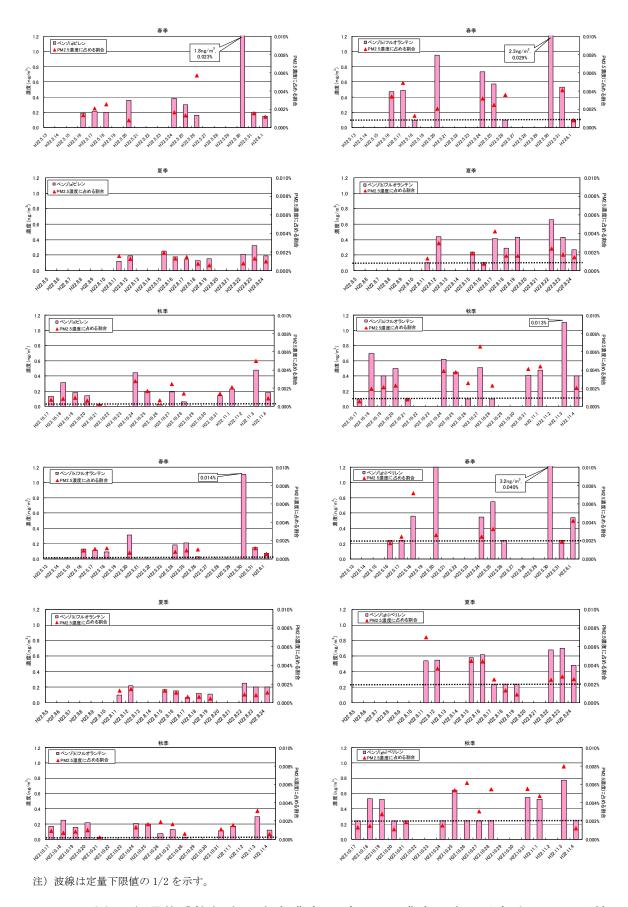


図 3.2-5-2(1) 多環芳香族類炭化水素濃度及び PM2.5 濃度に占める割合の日平均値

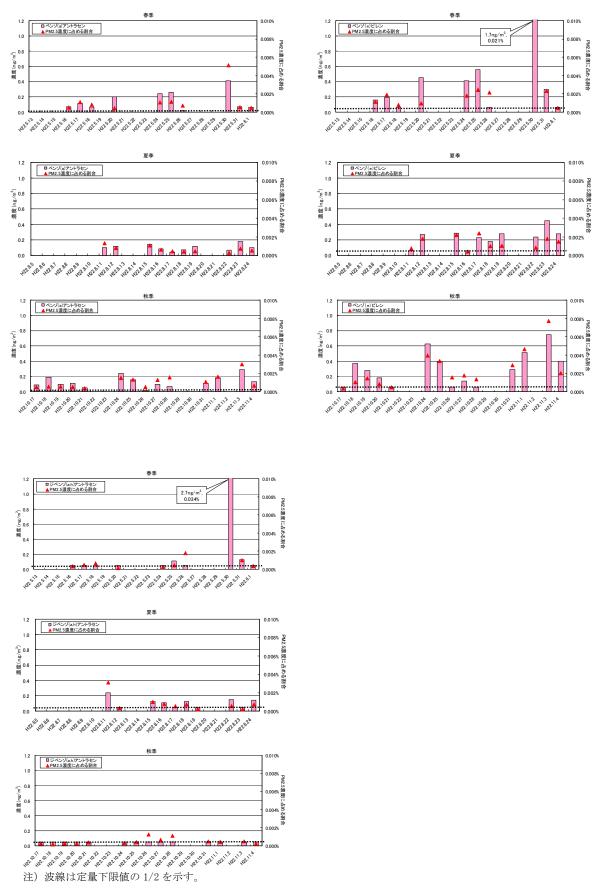


図 3.2-5-2(2) 多環芳香族類炭化水素濃度及び PM2.5 濃度に占める割合の日平均値

3-3 発生源別寄与割合の推計

発生源別寄与割合の推計は、レセプターモデルの1つである CMB 法(Chemical Mass Balance Method:化学質量収支法)を用いて行った。解析は、表 3.3 に示すデータを用いて、溝畑特認教授(大阪府立大学)から提供を受けた計算ソフトを用いて実施した。発生源の種類は、土壌・海塩・鉄鋼工業・石油燃焼・廃棄物燃焼・自動車排出・ブレーキ磨耗粉塵粒子の7発生源とし、 NO_3^- 、 SO_4^{2-} 、 NH_4^+ 及び OC 濃度について、環境データ(実測濃度)から解析結果(計算濃度)を除した値の合計値を二次生成粒子**濃度とした。また、実測の質量濃度から8種類の発生源別寄与濃度の合計値を除した濃度を不明分とした。

※窒素酸化物、硫黄酸化物、炭化水素等のガス状物質が大気中で反応し粒子状物質に変化したもの

表 3.3 (1) CMB 法による解析条件

〇環境データ

【対象粒子】PM2.5

【対象データ】 PM2.5 濃度が 15 µg/m³を超過した日(図 3.2-2 参照)

※春季3日、夏季5日、秋季6日、冬季8日

【成分】24項目

金属類: Na、Al、K、Ca、Ti、V、Mn、Fe、Ni、Cu、Zn、As、Sb、Baの14項目

(ただし、Na、K 及び Ca については、イオン>金属の場合にイオン濃度を用いた。)

イオン成分 : NO₃⁻、SO₄²⁻、NH₄⁺の3項目

炭素成分 : OC、ECの2項目 及び 質量濃度

〇発生源データ

【対象粒子】SPM

【発生源の種類】7種類

自然起源 : 土壌粒子、海塩粒子

固定発生源 : 鉄鋼工業粒子、石油燃焼粒子、廃棄物燃焼粒子

移動発生源:自動車排出粒子、ブレーキ摩耗粉塵粒子

【成分】上記の環境データに示す20項目(各発生源における割合の抜粋を表4.2(2)に示す)

〇指標成分

金属類 : Na、Al、K、Ca、Ti、V、Mn、Fe、Ni、Zn、Sb、Ba 及びECの13項目

表 3.3 (2) 各発生源における成分の割合(抜粋)

(%)

	土壌粒子	海塩粒子	鉄鋼工業粒子	石油燃焼粒子	廃棄物燃焼 粒子	自動車排出 粒子	ブレーキ磨耗粉塵粒子
Na	1.2	30.4	1.4	1.0	12.0	0.0	0.8
Ca	5.7	1.2	4.5	0.1	1.1	0.1	3.2
K	1.2	1.1	1.3	0.1	20.0	0.0	0.4
Fe	5.1	0.0	15.7	0.5	0.6	0.1	9.1
SO ₄ ²⁻	0.1	0.0	0.0	31.8	0.0	2.2	0.0
EC	1.3	0.0	0.5	30.0	5.0	49.4	15.3

注) 溝畑らの既存調査データによる。

発生源別寄与割合の季節平均を図3.3に示す。

- ・ 二次生成粒子の寄与割合は66~77%と各発生源の中で最も大きかった。
- ・ ついで自動車排出粒子が $13\sim14\%$ 、廃棄物燃焼粒子が $2\sim4\%$ 、石油燃焼粒子が $1\sim3\%$ 、鉄鋼工業粒子が $1\sim3\%$ で、季節変動はあまりなかった。



図3.3 発生源別寄与割合(季節平均)

4 平成21年度(森ノ宮)と平成22年度(淀工)調査結果の比較

4-1 調査期間中の気象概況

調査期間中の気温等の気象状況を表 4.1-1 に示す。

- ・ 春季は、平成 21 年度の森之宮での調査(平成 22 年 3 月)に引き続き、平成 22 年度 の淀工での調査(平成 22 年 5 月)を実施したため、平均気温が大きく異なったが、 両調査期間とも期間中の気温変動が大きく、寒気の影響で気温が下がったり、暖かい 空気が入り気温が上がった。平成 22 年度は前線を伴った低気圧の通過の影響で大雨 となった日があり、平成 21 年度に比べ、降水量が多かったが、日射量も多かった。 平均風速は同程度であった。
- ・ 夏季は、平成22年度の方が平均気温が高く、日射量も多かった。平成21年度の降水量は非常に少なかった。平均風速は平成22年度の方が小さかった。
- ・ 秋季は、平均するとほぼ同じような気象状況であった。
- ・ 冬季は、平均気温は同じであったが、平均風速は平成 22 年度の方が小さく、日射量 は平成 22 年度の方が多かった。

表 4.1-1 調査期間中の気象状況

上段: 平成 21 年度森ノ宮、下段: 平成 22 年度淀工

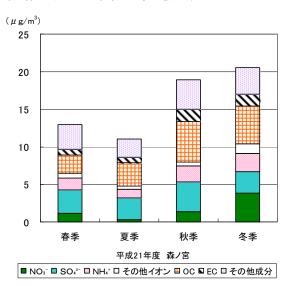
調査期間		平均風速	平均気温 (℃)	平均湿度 (%)	降水量		積算日射量
		(m/s)			積算(mm)	日数(日)	(MJ/m ²)
春季	平成22年3月30日から4月18日	2.0	13.7	61	48.0	3	11.27
甘子	平成22年5月13日から6月1日	2.1	19.6	65	106.5	7	15.43
夏季	平成21年8月20日から9月8日	2.3	27.2	60	1.9	1	14.83
女子	平成22年8月5日から8月24日	2.1	30.7	64	26.5	3	17.56
秋季	平成21年10月22日から11月11日	1.8	17.4	70	95.4	5	7.46
1人子	平成22年10月17日から11月4日	1.8	17.2	64	66.5	5	7.60
冬季	平成22年1月21日から2月9日	1.8	7.1	67	45.8	5	5.95
* * *	平成23年2月3日から2月22日	1.6	7.1	59	60.0	4	9.42

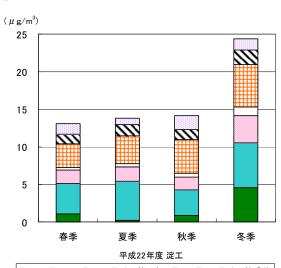
注 1) 平成 21 年度は国設大阪局(大阪府地域大気汚染常時監視測定データファイル(速報値))における 11 時から翌日 9 時までのデータ 注 2) 平成 22 年度は風速・気温は守口保健所局(大阪府地域大気汚染常時監視測定データファイル(速報値))における 12 時から翌日 10 時までのデータ、湿度・降水量・日射量は大阪管区気象台における 12 時から翌日 10 時までのデータ

4-2 PM2.5 濃度及び PM2.5 中の各種成分濃度

4-2-1 PM2.5 濃度

季節別の PM2. 5 濃度を表 4.2-1 に、PM2. 5 中の各種成分濃度 (イオン成分 (NO_3 、 SO_4 、 NH_4 、及びその他イオン (6 項目))、炭素成分 (OC、EC)、その他成分 (PM2. 5 濃度からイオン成分及び炭素成分濃度を除したもの)) の季節平均を図 4.2-1-1 に、日平均を図 4.2-1-2 に示す。


- ・ 森ノ宮は春季・夏季に比べて秋季・冬季に PM2.5 濃度が高かった。
- ・ 淀工は冬季に PM2.5 濃度が高かった。
- 春季の PM2.5 濃度は季節平均値が同じであったが、夏季と冬季は淀工の方が高く、秋季は森ノ宮の方が高かった。
- ・ PM2.5/SPM 比は森ノ宮と淀工で差があるものの、春季・夏季に低く、秋季・冬季に高い傾向にあった。
- ・ 淀工の方が全体的に日変動が大きかった。


表 4.2-1 季節別の PM2.5 濃度

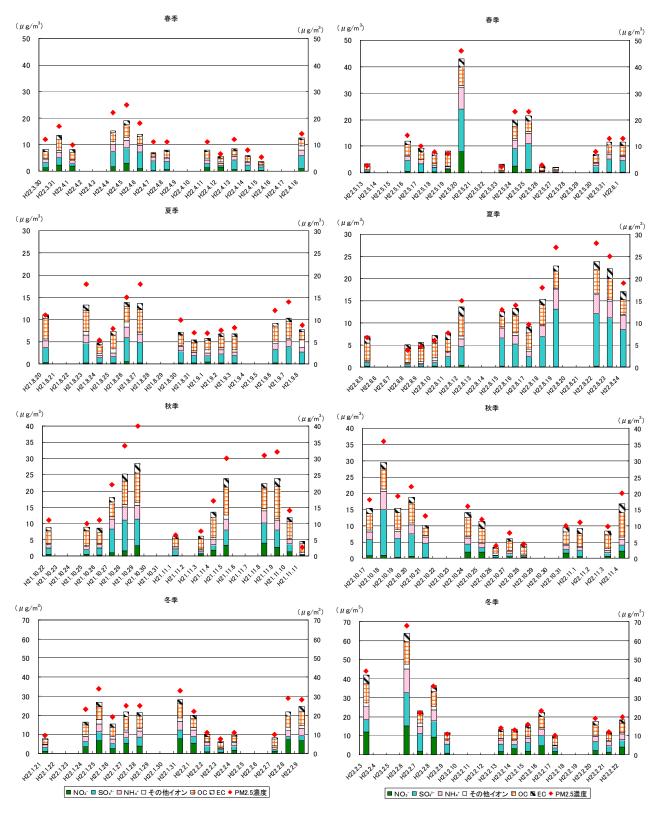
上段: 平成 21 年度森ノ宮、下段: 平成 22 年度淀工

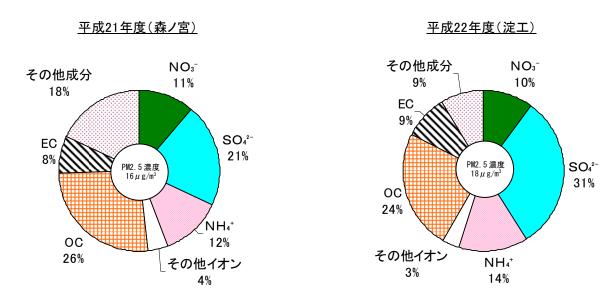
	15 μ g/m³ 超過日数	35 μ g/m³ 超過日数 ()内は PM2.5 濃度	季節平均値 (μ g/m³)	SPM 濃度 [※] (μg/m³)	PM2.5/SPM
春季	4日 3日	1日(46)	13 13	19 25	0.68 0.52
夏季	2日 5日		11 14	18 29	0.61 0.48
秋季	7日 6日	1日(40) 1日(36)	19 14	23 16	0.83 0.88
冬季	9日 8日	3 日 (44,68,36)	20 24	21 28	0.95 0.86
年間 (56 日)	22 日 22 日	1日 5日	16 16	21 25	0.77 0.68

※大阪府地域大気汚染常時監視測定データファイル(速報値)より

■ NO₃⁻ ■ SO₄²⁻ □ NH₄⁺ □ その他イオン ■ OC ■ EC □ その他成分

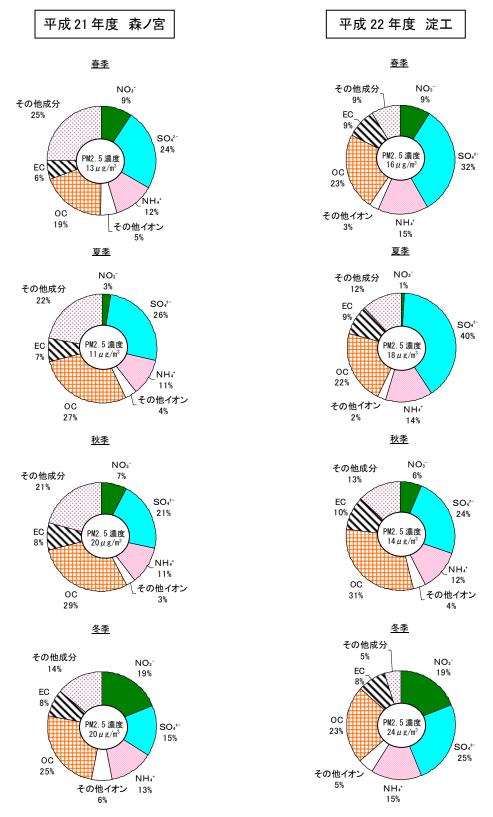
図 4.2-1-1 PM2.5 中の各種成分濃度(季節平均)




図 4.2-1-2 PM2.5 中の各種成分濃度 (日平均、左:平成 21 年度森ノ宮、右:平成 22 年度淀工)

4-2-2 各種成分濃度

PM2.5 濃度に占める各種成分濃度の割合の年度平均値を図 4.2-2-1 に、季節平均値を図 4.2-2-2 に示す。


なお、前述のとおり、平成 22 年 5 月 13、19、23、27 日 (H22 春季)、平成 22 年 8 月 5、8、9、10 日 (H22 夏季) のデータに加えて、平成 21 年 11 月 11 日 (H21 秋季) のデータも同じ理由により、解析対象外とした。(4-2-3、4-2-4も同じ)

- PM2.5に含まれる主な成分は、SO₄²⁻、OC、NH₄⁺、NO₃⁻及びECである。
- ・ SO₄2-及び NH₄+濃度の割合は、すべての季節において、淀工の方が高かった。
- ・ 0C 濃度の割合は、夏季に森ノ宮の方が高かった。
- ・ NO₃-濃度の割合は、ほとんど違いがなかった。
- ・EC濃度の割合は、冬季を除き、淀工の方が高かった。

※平成 21 年 11 月 11 日(H21 秋季)、平成 22 年 5 月 13,19,23,27 日(H22 春季)、平成 22 年 8 月 5,8,9,10 日(H22 夏季)のデータは含まれていない。

図 4.2-2-1 PM2.5 濃度に占める各種成分濃度の割合(年度平均値)

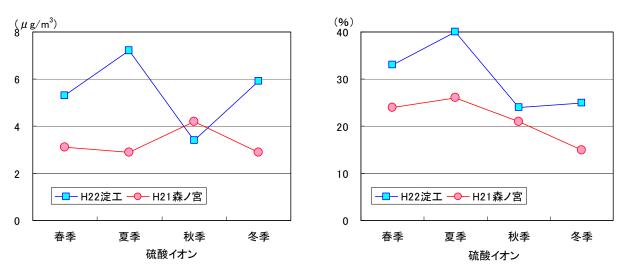

※平成 21 年 11 月 11 日(H21 秋季)、平成 22 年 5 月 13,19,23,27 日(H22 春季)、平成 22 年 8 月 5,8,9,10 日(H22 夏季)のデータは含まれていない。

図 4. 2-2-2 PM2. 5 濃度に占める各種成分濃度の割合 (季節平均値)

4-2-3 イオン成分

(1) 硫酸イオン

主な成分である SO_4^{2-} 濃度及び PM2. 5 濃度に占める割合の季節平均値を図 4. 2-3-1 に、 SO_4^{2-} 濃度の日平均値を図 4. 2-3-3 に示す。

※平成 21 年 11 月 11 日(H21 秋季)、平成 22 年 5 月 13,19,23,27 日(H22 春季)、平成 22 年 8 月 5,8,9,10 日(H22 夏季)のデータは含まれていない。

図 4. 2-3-1 SO₄2-濃度及び PM2. 5 濃度に占める割合 (季節平均値)

- ・ PM2.5 濃度に占める SO_4^{2-} 濃度の割合は、すべての季節において淀工の方が高かった。
- ・ SO₄²-濃度の割合は共に秋季・冬季に比べ、春季・夏季に高く、一般に硫酸塩は光化 学反応が活発に行われる夏季に生成されやすいことと一致していた。
- · SO₄2-濃度の日変動及び季節変動は、淀工の方が大きかった。

今回の調査結果では、自排局(淀工)で濃度も割合も高かったが、気象条件が異なり 広域移流の影響も示唆されるため、自動車の影響については引き続き検討する必要が ある。

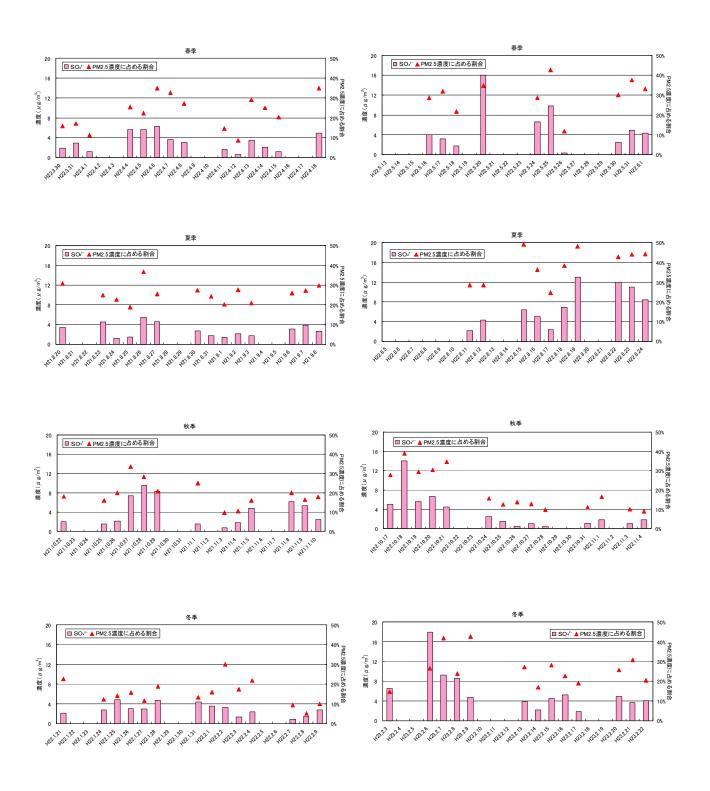


図 4.2-3-3 SO₄²⁻濃度(日平均、左:平成 21 年度森ノ宮、右:平成 22 年度淀工)

(2) 硝酸イオン

主な成分である NO_3 濃度及び PM2. 5 濃度に占める割合の季節平均値を図 4. 2-3-4 に、 NO_3 濃度の日平均値を図 4. 2-3-6 に示す。

※平成 21 年 11 月 11 日(H21 秋季)、平成 22 年 5 月 13,19,23,27 日(H22 春季)、平成 22 年 8 月 5,8,9,10 日(H22 夏季)のデータは含まれていない。

図 4.2-3-4 NO₃-濃度及び PM2.5 濃度に占める割合 (季節平均値)

- ・ PM2.5 濃度に占める NO_3 濃度の割合も濃度も、森ノ宮と淀工でほとんど違いがなかった。
- ・ NO₃ 濃度の割合は共に夏季に低く、冬季に高く、硝酸塩は気温の高い時期にはガス 状で存在し、逆に気温の低い時期には粒子化していることと一致していた。
- ・NO。"濃度の日変動は、淀工の方が大きかった。

今回の調査結果では、一般局(森ノ宮)と自排局(淀工)で違いがなかったが、気象条件も異なるため、自動車の影響については引き続き検討する必要がある。

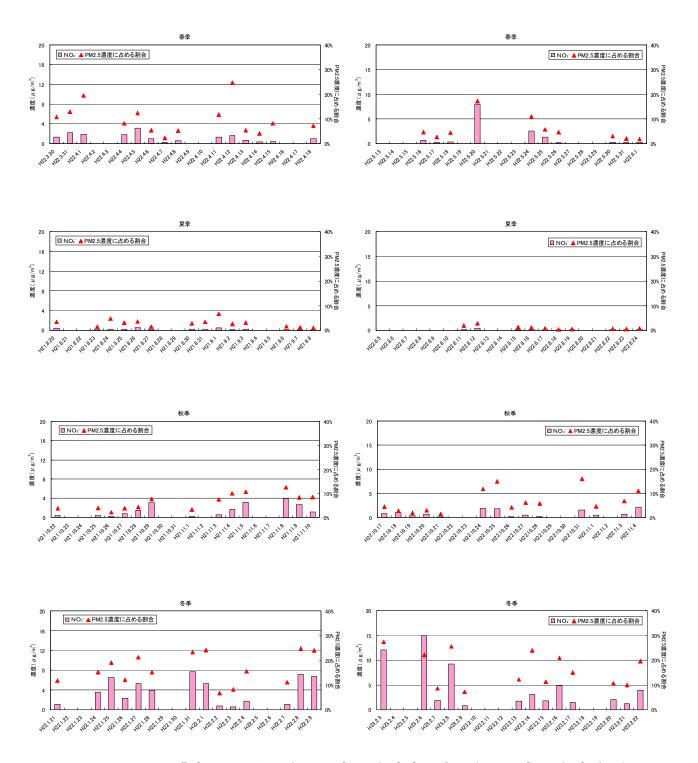


図 4. 2-3-6 NO₃-濃度(日平均、左:平成 21 年度森ノ宮、右:平成 22 年度淀工)

4-2-4 炭素成分

(1) 有機性炭素

0C 濃度及び PM2.5 濃度に占める割合の季節平均値を図 4.2-4-1 に、0C 濃度の日平均値を図 4.2-4-3 に示す。

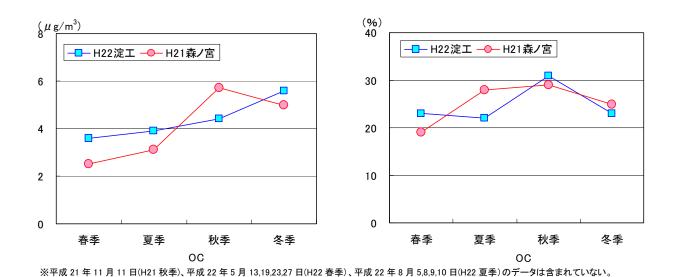


図 4.2-4-1 OC 濃度及び PM2.5 濃度に占める割合 (季節平均値)

- ・PM2.5 濃度に占める OC 濃度の割合は、春季に淀工で、夏季に森ノ宮で高かったが、 年間を通してみると、明確な違いはなかった。
- ・ 0C 濃度の割合は共に秋季に高かったが、原因は不明である。

図 4.2-4-4 に示すとおり、0C と EC の質量濃度比は共に日変動が大きいことから、0C は、ディーゼル排ガスの指標である EC とは発生源が全く同一ではなく、自動車以外の影響も考えられる。

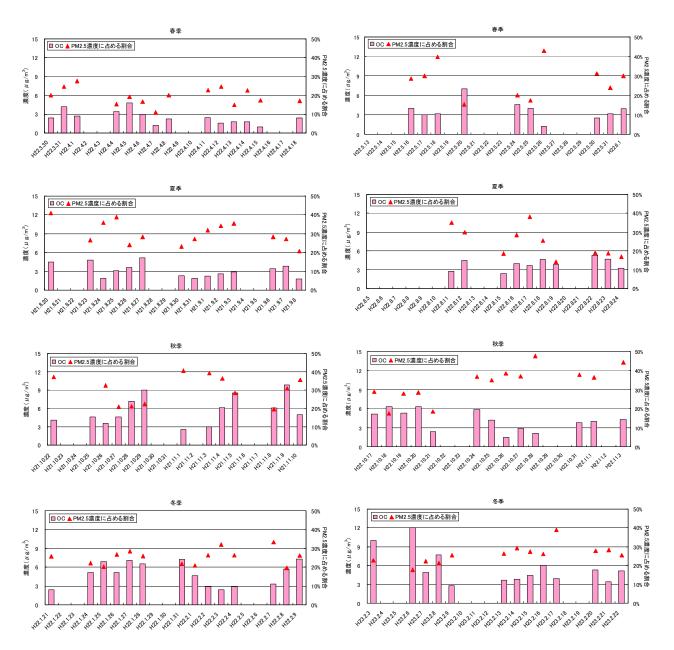


図 4.2-4-3 00 濃度(日平均、左:平成 21 年度森ノ宮、右:平成 22 年度淀工)

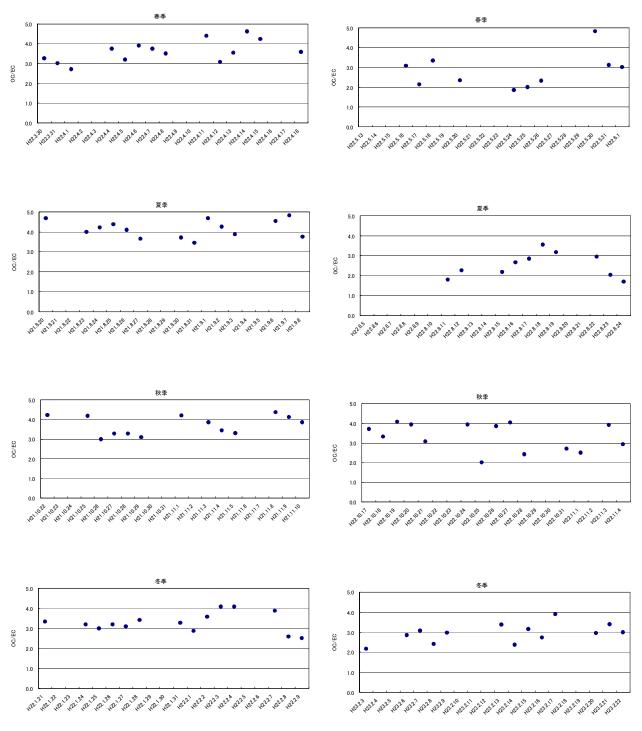


図 4.2-4-4 OC と EC の質量濃度比 (日平均、左:平成 21 年度森ノ宮、右:平成 22 年度淀工)

(2) 元素状炭素

EC 中の主な成分である EC_{550} 及び EC_{700} の濃度及び PM2.5 濃度に占める割合の季節平均値を図 4.2-4-5 に、 EC_{550} 及び EC_{700} 濃度の日平均値を図 4.2-4-7 に示す。

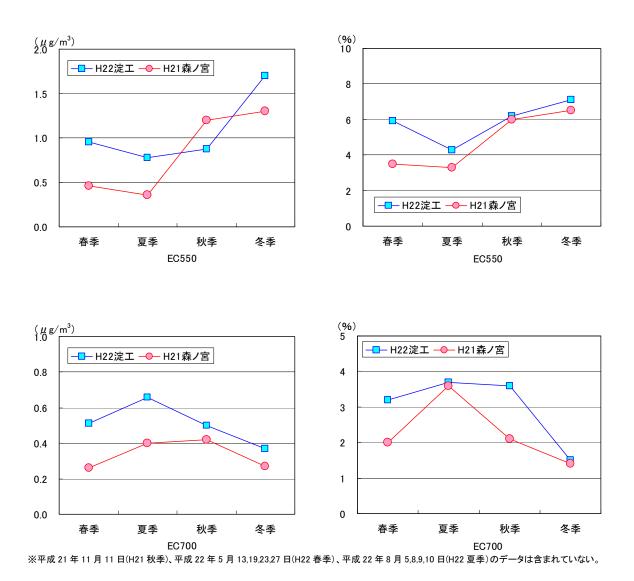


図 4.2-4-5 EC₅₅₀ 及び EC₇₀₀ の濃度及び PM2.5 濃度に占める割合 (季節平均値)

- ・ PM2.5 濃度に占める EC₅₅₀濃度の割合は、春季及び夏季に淀工で高かった。
- ・ EC₇₀₀ 濃度の割合は、春季及び秋季に淀工で高かった。前述のとおり、EC₇₀₀ はディーゼル排気粒子との報告があり、濃度はすべての季節において淀工の方が高く、自動車の影響が考えられる。
- ・ EC_{550} 濃度の割合は共に夏季に低く冬季に高く、 EC_{700} 濃度の割合は共に夏季に高く冬季に低かったが、原因は不明である。

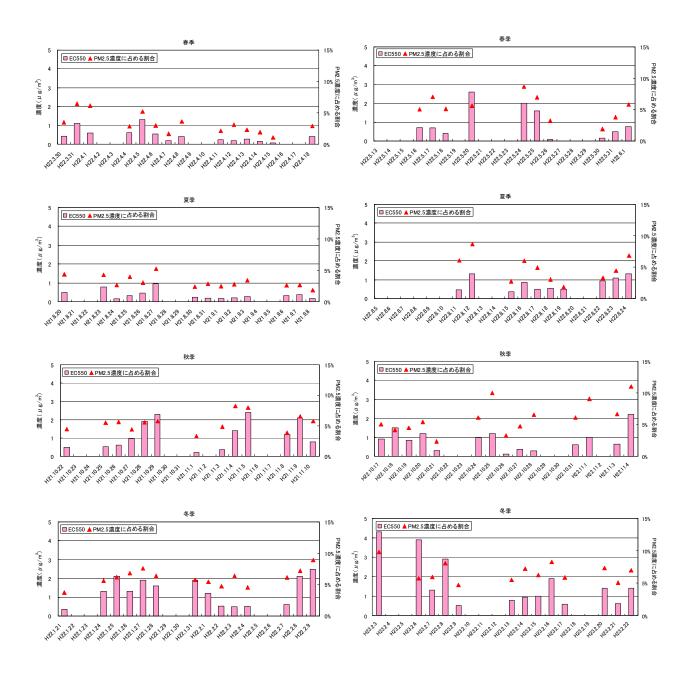


図 4.2-4-7(1) EC₅₅₀ 濃度(日平均、左:平成 21 年度森ノ宮、右:平成 22 年度淀工)

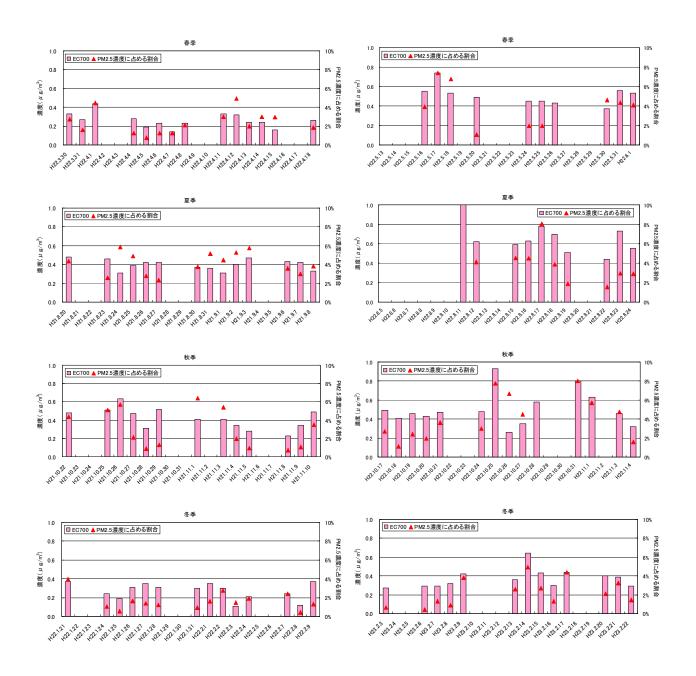


図 4.2-4-7(2) EC₇₀₀ 濃度(日平均、左:平成 21 年度森ノ宮、右:平成 22 年度淀工)

4-3 発生源別寄与割合の推計

発生源別寄与割合の推計は、レセプターモデルの1つである CMB 法を用いて、前述の3-3と同様の手法で行った。解析条件を表4.3に、発生源別寄与割合の年平均を図4.3-2に、季節平均を図4.3-3に示す。

表 4.3 CMB 法による解析条件

〇環境データ

【対象粒子】PM2.5

【対象データ】 PM2.5 濃度が 15 μ g/m³を超過した日

【成分】24項目

金属類: Na、Al、K、Ca、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、As、Sb、Baの15項目

(ただし、Na、K 及び Ca については、イオン>金属の場合にイオン濃度を用いた。)

イオン成分: NO₃⁻、SO₄²⁻、NH₄⁺の3項目

炭素成分 : OC、ECの2項目 及び 質量濃度

〇発生源データ

【対象粒子】SPM

【発生源の種類】7種類

自然起源 : 土壌粒子、海塩粒子

固定発生源 : 鉄鋼工業粒子、石油燃焼粒子、廃棄物燃焼粒子

移動発生源:自動車排出粒子、ブレーキ摩耗粉塵粒子

※二次生成粒子は硝酸イオン、硫酸イオン、アンモニウムイオン、有機性炭素濃度の環

境データ(実測濃度)から解析結果(計算濃度)を除した値の合計値とした。

【成分】上記の環境データに示す 21 項目

〇指標成分

金属類: Na、Al、K、Ca、Ti、V、Cr、Mn、Fe、Ni、Zn、Sb、Ba 及びECの14項目

(平成 22 年度は Cr を除く13 項目)

- ・ 寄与割合が最も大きかったのは二次生成粒子で、その割合は淀工の方が大きく、どちらも季節変動はあまりなかった。前述 (4-2-3(1)) のとおり、淀工では森ノ宮に比べ硫酸イオン濃度の割合が 10%程度大きく、その結果、二次生成粒子の割合が<math>10%程度大きくなったと考えられる。
- ・ 寄与割合が二番目に大きかったのは自動車排出一次粒子で、10~15%程度であった。 森ノ宮の寄与割合は春季・夏季に比べ秋季・冬季に大きかったが、淀工では季節変動 がなかった。また、寄与割合の年平均値は、淀工の方が大きく、季節別では、春季・ 夏季に淀工が大きく、自排局では自動車の影響が大きいと考えられる。
- ・ 森ノ宮で春季・夏季に石油燃焼粒子の寄与割合が大きく、石油燃焼の指標元素である バナジウム濃度の割合が春季・夏季に大きいことと一致している。また、浮遊粒子状 物質調査の結果(図 4.3-1)においても、4 月から7 月にかけて微小粒子中のバナジ ウム濃度が高い。
- ・ 上述以外は、固定発生源(鉄鋼工業・石油燃焼・廃棄物燃焼)の一次粒子に季節・地点で違いはなく、固定発生源全体の寄与割合は10%程度であった。

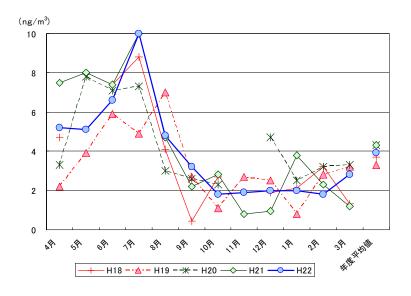


図 4.3-1 微小粒子中のバナジウム濃度の経月変化(森ノ宮)

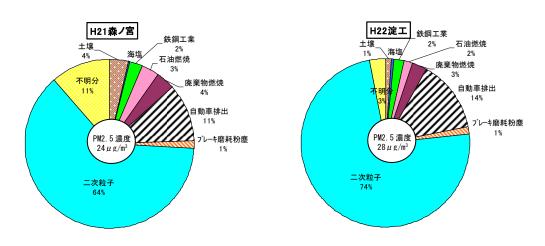


図 4.3-2 発生源別寄与割合(年平均)

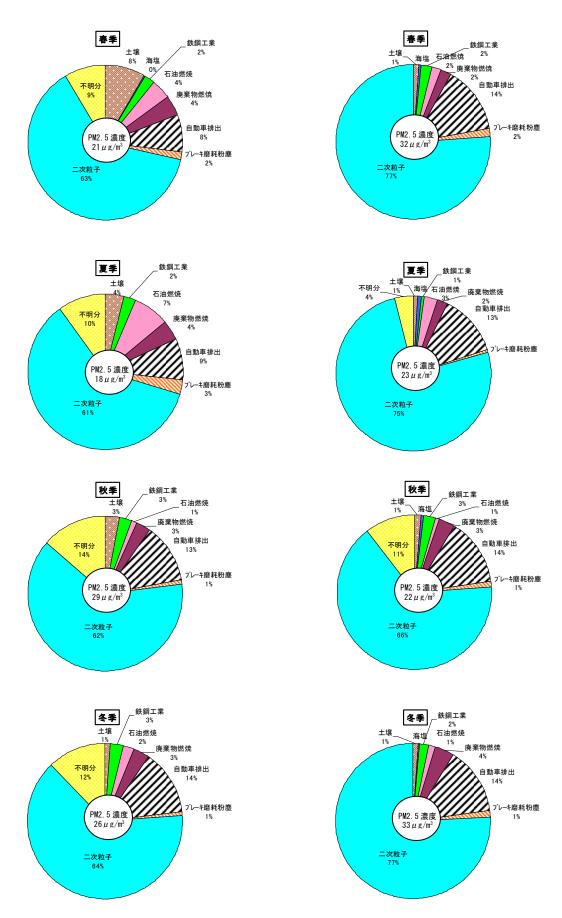
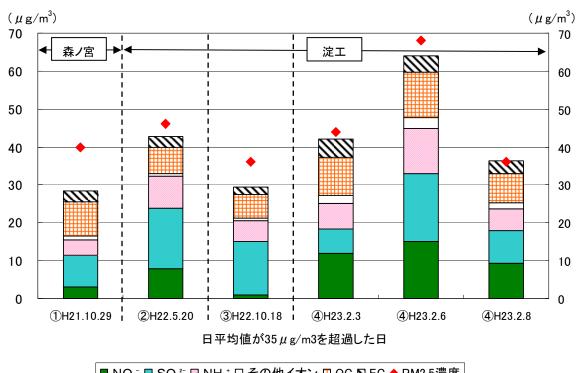



図 4.3-3 発生源別寄与割合(季節平均、左:平成21年度森ノ宮、右:平成22年度淀工)

5 高濃度日の特徴

5-1 高濃度日における PM2.5 濃度及び主な成分濃度の状況

平成 21 年度及び平成 22 年度調査結果のうち、環境基準の日平均値である $35 \mu \text{ g/m}^3$ を超過した日を高濃度日として解析を行った。高濃度日の PM2.5 中の各種成分濃度を図 5.1-1 に示す。また、高濃度日前後の PM2.5 中の各種成分濃度を図 5.1-2 に示す。

■ NO₃⁻ ■ SO₄²⁻ ■ NH₄⁺ □ その他イオン ■ OC **■** EC ◆ PM2.5濃度

図 5.1-1 高濃度日の PM2.5 中の各種成分濃度

各高濃度日前後における PM2.5 濃度及び主な成分(SO_4^{2-} 、 NO_3^- 、OC 及び EC)濃度の日平均値の状況は以下のとおりである。

① [PM2.5 濃度] 平成 21 年 10 月 26 日までは環境基準の年平均値である $15 \mu \text{ g/m}^3$ 以下であったが、27 日に $22 \mu \text{ g/m}^3$ と $15 \mu \text{ g/m}^3$ を超過し、その後、濃度が上昇していき、29 日に $40 \mu \text{ g/m}^3$ となった。30 日及び 31 日は試料捕集を実施していないため不明であるが、11 月 1 日には $15 \mu \text{ g/m}^3$ 以下となった。

[主な成分濃度] SO_4^2 -濃度は、高濃度日前々日の27日に濃度が急上昇し、PM2.5 濃度に占める割合が前日の20%から34%へと増えた。その後、高濃度日前日まで濃度が上昇した。 NO_3^- 、OC 及び EC 濃度は、高濃度日である29日まで濃度が上昇していき、 NO_3^- 濃度のPM2.5 濃度に占める割合については、29日は前後の日に比べると高かった。

② [PM2.5 濃度] 平成 22 年 5 月 19 日までは環境基準の年平均値である $15 \mu \text{ g/m}^3$ 以下であったが、20 日に $46 \mu \text{ g/m}^3$ まで急上昇した。21 日及び 22 日は試料捕集を実施していないため不明であるが、23 日には $15 \mu \text{ g/m}^3$ 以下となった。

[主な成分濃度] $S0_4^2$ 及び $N0_3$ 濃度は、高濃度日である 20 日に急上昇し、特に $S0_4^2$ は濃度上昇が激しかった。

③ [PM2.5 濃度] 秋季の調査開始日である平成 22 年 10 月 17 日に $18 \mu \text{ g/m}^3$ とすでに 15 $\mu \text{ g/m}^3$ を超過し、18 日に $36 \mu \text{ g/m}^3$ となった。その後、濃度は下降していったが、19 日から 20 日にかけても $15 \mu \text{ g/m}^3$ を超過した状況が続き、21 日に $15 \mu \text{ g/m}^3$ 以下となった。

[主な成分濃度] SO₄²-濃度のみが、高濃度日である 18 日に急上昇した。

④ [PM2.5 濃度] 冬季の調査開始日である平成 23 年 2 月 3 日に $44 \mu \text{ g/m}^3$ とすでに $35 \mu \text{ g/m}^3$ を超過し、4 日及び 5 日は試料捕集を実施していないため不明であるが、6 日には $68 \mu \text{ g/m}^3$ と平成 22 年度の最高濃度となった。7 日に、濃度はいったん下降し、8日に $36 \mu \text{ g/m}^3$ と再び $35 \mu \text{ g/m}^3$ を超過し、9 日に $15 \mu \text{ g/m}^3$ 以下となった。

[主な成分濃度] SO_4^{2-} 、 NO_3^- 及び OC 濃度は、高濃度日である 6 日に平成 22 年度の最高濃度となった。 NO_3^- 濃度のPM2. 5 濃度に占める割合については、 3 日が 27%とこの期間の最高値となり 7 日にかけて下降したが、再び 8 日に 26%まで上昇した。EC 濃度の PM2. 5 濃度に占める割合については、 3 日が 3 と同様の傾向を示した。一方、3 に 濃度の PM2. 5 濃度に占める割合については、 3 日よりも 6 日の方が高かった。

2月3日及び6日に平成22年度の最高濃度を示した成分を表5.1-1に示す。

表 5.1-1 平成 23年2月3日及び6日に平成22年度の最高濃度を示した成分

平成23年2月3日	平成23年2月6日		
Fe、Zn、Mn、Cu、V、Sb、Ni、Cl ⁻ 、	K、Na、Ca、Al、Mg、Pb、Ba、As、		
OC, EC	Cd , NO_3^- , SO_4^{2-} , Na^+ , NH_4^+ , K^+ , Mg^{2+} ,		
	Ca ²⁺		

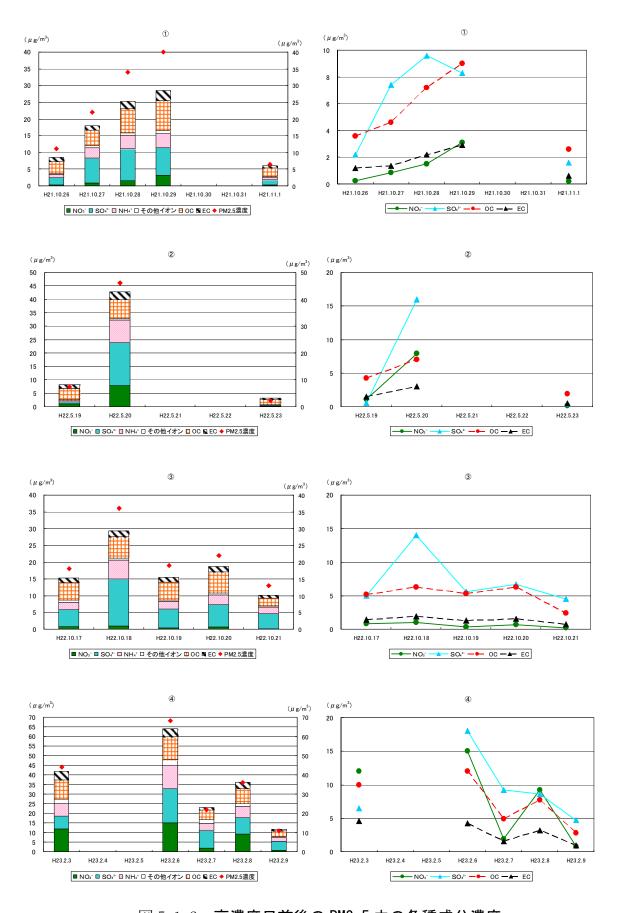


図 5.1-2 高濃度日前後の PM2.5 中の各種成分濃度

5-2 高濃度日における気象の状況

高濃度日前後の気象状況を表 5.2-1 に、天気図と天気概況を表 5.2-2 に、大阪管区気象台と生駒山の気温差及び風速の経時変化を図 5.2-1 に示す。

高濃度発生要因の一つとして考えられる逆転層の出現については、大阪管区気象台 (標高約 20m) と生駒山 (標高約 636m) の気温差を指標とした。一般に大気が 100m上昇すると温度は 0.65 で下がることから、両地点の気温差 (大阪管区気象台-生駒山) は約 4 でと考えられるので、両地点の気温差が 4 でを下回った時に、逆転層が出現していると考えられる。

各高濃度日前後における気象の状況は以下のとおりである。

- ① 平成 21 年 10 月 27 日 22 時から 30 日 9 時にかけては、風速が 1.0m/s 以下となることが多く、高濃度日である 29 日は日平均風速が 1.2 m/s と小さかった。高濃度日の日平均気温は 19.8℃と 10 月下旬の平年値(16.8℃)より 3 ℃も高かった。また、高濃度日直前には気温差が 4 ℃を大きく下回る逆転層が形成されていた。
- ② 平成 22 年 5 月 20 日 5 時から 21 日 9 時にかけては、風速が 1.0m/s 以下となることが 多く、高濃度日である 20 日は日平均風速が 1.2 m/s と小さかった。21 日及び 22 日に は大阪管区気象台も含め九州から東北までの広い範囲で黄砂が観測された。さらに、 21 日及び 22 日は気温が上昇し、5 月下旬の平年値(20.7°C)より 3 °Cも高かった。また、高濃度日直前には気温差が 4 °Cを大きく下回る逆転層が形成されていた。
- ③ 高濃度日前日である平成22年10月17日22時から18日9時にかけては、風速が1.0m/s 以下となることが多く17日の日平均風速は1.1 m/s と小さかった。高濃度日の日平 均気温は10月中旬の平年値(18.9 $^{\circ}$ C)よりやや高かった。
- ④ 平成 23 年 2 月 3 日 1 時から 7 日 9 時にかけては、風速が 1.0 m/s 以下となることが多く、 3 日から最高濃度を記録した 6 日まで及び高濃度日である 8 日は日平均風速が 1.5 m/s 以下であった。日平均気温は 2 月上旬の平年値 (5.2 C) より高く、特に 6 日は 4.5 C も高かった。また、高濃度日直前には気温差が 4 C を大きく下回る逆転層が形成されていた。

表 5.2-1① 高濃度日前後の気象状況

調査日		風速(m/s)				気温(℃)			降水量	量(mm)	積算日射量
(平成21年)	平均	最大	最小	最多風向	平均	最高	最低	平均	積算	最大時量	(MJ/m ²)
10月26日 (月)	2.1	3.8	0.3	WNW	18.0	18.9	16.7	79	4.0	2.5	3.6
10月27日 (火)	1.8	4.1	静穏	NW	17.9	22.9	13.9	64	0.0	0.0	9.8
10月28日 (水)	1.4	2.5	0.7	N	19.3	23.9	15.9	58	0.0	0.0	11.6
10月29日 (木)	1.2	2.3	静穏	N	19.8	25.1	15.6	69	0.0	0.0	10.9
10月30日 (金)	1.9	3.0	0.8	N	20.3	25.8	15.5	57	0.0	0.0	11.5
10月31日 (土)	1.5	3.2	0.7	NNW	20.9	24.8	17.8	65	0.0	0.0	11.2
11月1日 (日)	2.0	4.0	0.4	NW	17.9	24.2	14.8	79	23.9	10.0	4.7

注1)大阪府地域大気汚染常時監視測定データファイル(速報値)における11時から翌日9時までのデータ

表 5.2-2① 高濃度日前後の天気図と天気概況

10.2		り 人 ス い		
月日	10月26日(月)	10月27日(火)	10月28日(水)	10月29日(木) (高濃度日)
天気図	1000 B	THE PROPERTY OF THE PROPERTY O	1028	1000 1000 1000 1000 1000 1000 1000 100
天気概況	台風第 20 号は、夜に八 丈島付近を通過。本州南 海上の低気圧や前線の 影響で、雨後曇。	台風第 20 号は、温帯低 気圧に変わりさらに発 達。寒気が入る。晴一時 曇。	高気圧に広く覆われ、穏 やかな秋晴れ。	帯状の高気圧に覆われ、 晴。
月日	10月30日(金)	10月31日(土)	11月1日(日)	11月2日(月)
天気図	30H9M	3 1 E 9H	11998	999 1004 1004 1000 2009 2009
天気 概況	高気圧に覆われ、晴一時 薄曇。	本州付近は、日中概ね晴 れ。北海道上空に強い寒 気が流れ込む。	寒冷前線が沖縄〜東北 にかけて南下し、晴後 雨。	冬型の気圧配置となり、 晴時々曇一時雨。

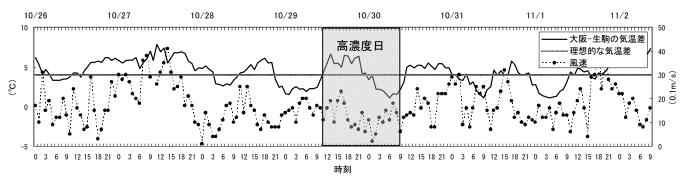


図 5. 2-1① 高濃度日前後の大阪管区気象台と生駒山の気温差及び風速の経時変化

注2)「静穏」とは風速が0.3m/s未満であることを示す。

表 5.2-1② 高濃度日前後の気象状況

調査日		風速(m/s)			気温(℃)			湿度(%)	降水量	量(mm)	積算日射量
(平成22年)	平均	最大	最小	最多風向	平均	最高	最低	平均	積算	最大時量	(MJ/m^2)
5月19日 (水)	1.4	2.5	0.4	NE	21.3	23.4	20.3	89	14.0	2.5	4.42
5月20日 (木)	1.2	3.5	0.3	W	21.6	25.6	17.7	76	0.0	0.0	12.57
5月21日 (金)	1.3	3.4	静穏	W	24.1	27.9	19.1	48	0.0	0.0	23.95
5月22日 (土)	2.4	4.3	0.9	Е	23.3	31.9	18.1	60	15.5	3.0	10.66
5月23日 (日)	3.0	4.1	1.5	NE	18.5	20.2	17.3	83	84.5	14.5	3.00

- 注1) 風速・気温は守口保健所局(大阪府地域大気汚染常時監視測定データファイル(速報値)) における12時から翌日10時までのデータ 注2) 湿度・降水量・日射量は大阪管区気象台における12時から翌日10時までのデータ
- 注3)「静穏」とは風速が0.3m/s未満であることを示す。

表 5.2-2② 高濃度日前後の天気図と天気概況

12 0. 2	2位 同版及口削极	の人気回し人気がルル		
月日	5月19日(水)	5月20日(木) (高濃度日)	5月21日(金)	5月22日(土)
天気図	1022 1032 1032	1012 1012 1012	1000 1000 1000 1000 1000 1000 1000 100	122B9M
天気概況	西日本の南岸に前線がのび、雨が続く。	西日本〜関東の南岸に のびる前線と気圧の谷 の影響で曇り。	高気圧に覆われ、広い範囲で晴れ。強い日差しにより気温が上昇し、各地で真夏日。	沖縄〜西日本に湿った 空気が流入し雨。西日本 や東京で黄砂を観測。
月日	5月23日(日)	5月24日(月)		
天気図	103 (nas)	1000 1000 1000 1000 1000 1000 1000 100		
天気 概況	低気圧と前線の影響を 受け、西日本では各地で 非常に激しい雨を観測。	日本海の低気圧に暖か く湿った空気が流れ込 む。		

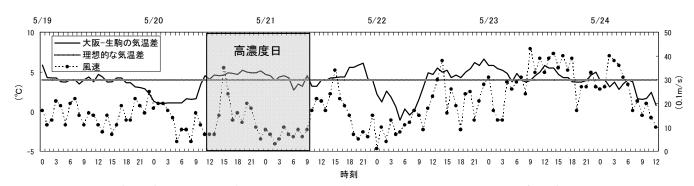


図 5.2-1② 高濃度日前後の大阪管区気象台と生駒山の気温差及び風速の経時変化

表 5.2-1③ 高濃度日前後の気象状況

調査日		風速(m/s)			気温(℃)			湿度(%)	降水量	量(mm)	積算日射量
(平成22年)	平均	最大	最小	最多風向	平均	最高	最低	平均	積算	最大時量	(MJ/m ²)
10月17日(日)	1.1	2.8	0.3	NNE	19.6	23.7	15.8	58	0.0	0.0	12.59
10月18日 (月)	1.9	3.1	1.0	NE	20.5	24.7	17.1	47	0.0	0.0	11.24
10月19日 (火)	2.5	3.3	0.9	NE	21.9	24.8	20.5	60	0.0	0.0	8.22
10月20日 (水)	2.1	3.2	1.1	NNE	21.5	23.5	20.1	68	0.0	0.0	5.00
10月21日(木)	1.8	3.0	0.7	NNE	20.2	22.1	18.7	62	0.0	0.0	5.58

注1) 風速・気温は守口保健所局(大阪府地域大気汚染常時監視測定データファイル(速報値)) における12時から翌日10時までのデータ注2) 湿度・降水量・日射量は大阪管区気象台における12時から翌日10時までのデータ注3) 「静穏」とは風速が0.3m/s未満であることを示す。

表 5.2-2③ 高濃度日前後の天気図と天気概況

		10 8 10 8 (8)		
月日	10月17日(日)	10月18日(月) (高濃度日)	10月19日(火)	10月20日(水)
天気図	1 1013 EG 1 17 11 11 11 11 11 11 11 11 11 11 11 1	1 1013 MC1 885hPo	1013 MCC1 986	17 1013 MCI 1980PP
天気概況	気圧の谷の影響で、近畿 〜関東の太平洋側は曇 り。台風第13号の21時 の中心気圧895hPa。	高気圧に覆われほぼ全 国的に晴れ。台風第 13 号は 3 時には中心気圧 885hPa を記録。	本州南海上に前線が停滞、西〜東日本の太平洋側で曇り。台風第 13 号は南シナ海へ。	前線の影響で南西諸島 〜西・東日本太平洋側で 雨や曇り。
月日	10月21日(木)	10月22日(金)		
天気図	100 Medical Control of the Control o	1028 1021 10 1008 9 1000 1000 1000 1000 1000 100		
天気概況	湿った気流が流れ込み、 西~東日本は厚い雲に 覆われ、太平洋側を中心 に雨。	西〜東日本は前線の影響で曇りや雨。		

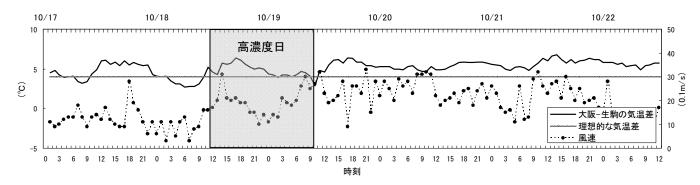


図 5.2-1③ 高濃度日前後の大阪管区気象台と生駒山の気温差及び風速の経時変化

表 5.2-1④ 高濃度日前後の気象状況

調査	調査日 風速(m/s)				気温(℃)		湿度(%)	降水量	란(mm)	積算日射量		
(平成23	年)	平均	最大	最小	最多風向	平均	最高	最低	平均	積算	最大時量	(MJ/m^2)
2月3日	(木)	0.9	2.1	静穏	W	7.0	11.6	2.9	52	0.0	0.0	11.83
2月4日	(金)	1.0	2.3	静穏	NNE	7.3	12.0	3.2	48	0.0	0.0	10.66
2月5日	(土)	0.9	1.6	静穏	NNE	7.3	11.7	3.0	58	0.0	0.0	7.39
2月6日	(日)	1.4	2.9	0.3	W	9.7	13.5	6.6	53	0.0	0.0	9.21
2月7日	(月)	1.8	3.5	0.7	NE	6.5	11.6	2.8	56	0.0	0.0	7.40
2月8日	(火)	1.2	2.2	0.3	WNW	8.1	11.6	5.8	73	10.5	2.5	5.32
2月9日	(水)	2.0	3.5	0.7	NNW	6.2	9.7	3.9	59	1.0	1.0	7.84

注1) 風速・気温は守口保健所局(大阪府地域大気汚染常時監視測定データファイル(速報値)) における13時から翌日11時までのデータ 注2) 湿度・降水量・日射量は大阪管区気象台における13時から翌日11時までのデータ

注3)「静穏」とは風速が0.3m/s未満であることを示す。

表 5.2-2④ 高濃度日前後の天気図と天気概況

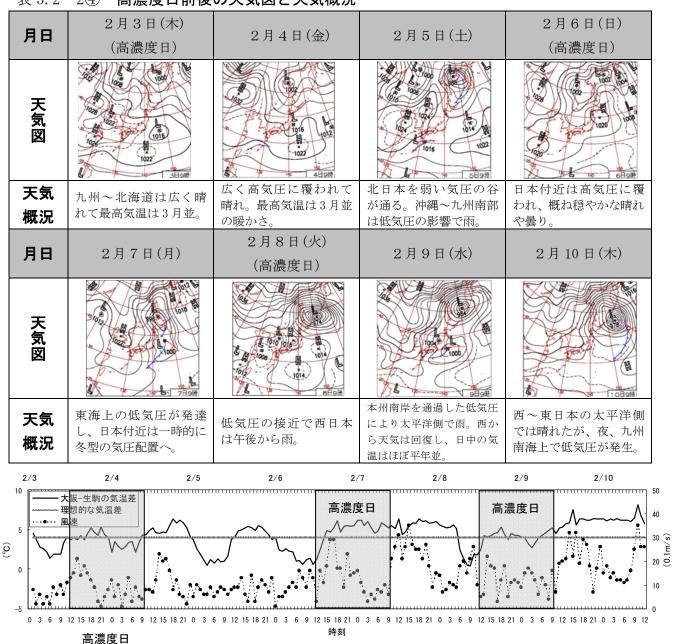


図 5.2-1④ 高濃度日前後の大阪管区気象台と生駒山の気温差及び風速の経時変化

5-3 高濃度日における大気汚染物質の状況

高濃度日前後における大気汚染物質(SPM、窒素酸化物(NOx)、光化学オキシダント(OX) および非メタン炭化水素(NMHC))の日平均を表 5.3-1 に、時間値を図 5.3-1 に示す。 各高濃度日前後における大気汚染物質濃度の状況は以下のとおりである。

- ① SPMの日平均値はPM2.5の高濃度日である平成21年10月29日にこの期間の最高濃度を示し、時間値でみると、29日18時から濃度が上昇し、30日未明に最高濃度となり、その後、徐々に減少していった。NOxおよびNMHCの日平均値も29日にこの期間の最高濃度を示し、時間値でみると、NOxは29日14時頃から濃度が上昇し、30日未明に最高濃度となり、その後、徐々に減少していった。一方、OX濃度は高濃度日前後の方が濃度が高かった。
- ② SPM の日平均値は PM2.5 の高濃度日である平成 22 年 5 月 20 日にこの期間の最高濃度を示し、時間値でみると、20 日 13 時から濃度が上昇し、21 日 11 時に最高濃度となり、その後、徐々に減少していった。NOx および NMHC の日平均値も 20 日にこの期間の最高濃度を示し、時間値でみると、NOx は 20 日 3 時頃から濃度が上昇し、20 日 21 時に最高濃度となり、その後、徐々に減少していった。一方、OX 濃度は、22 日 7 時頃から濃度が上昇し、24 日の 6 時頃まで、夜間も含め濃度が高い状態が続いた。
- ③ SPMの日平均値はPM2.5の高濃度日である平成22年10月18日にこの期間の最高濃度を示し、時間値でみると、18日12時頃から濃度が上昇し、19日13時頃まで濃度がや心高い状態が続いた。また、OX濃度も18日に高く、15時に79ppbとこの期間の最高濃度となった。その他の大気汚染物質は濃度が高くなることはなかった。
- ④ SPM 濃度は、平成 23 年 2 月 3 日 11 時ごろから上昇しはじめ、徐々に上昇し7日 2 時から 4 時に $100 \, \mu \, g/m^3$ を超過した後、急激に減少していった。その後、8 日 14 時から9 日 11 時にかけてもやや高い状況が続いた。SPM の日平均値は PM2.5 が平成 22 年度の最高濃度となった6 日にこの期間の最高濃度を示した。また、OX 濃度も6 日に高く、16 時に 66ppb とこの期間の最高濃度となった。一方、NOx および NMHC の日平均値は3 日にこの期間の最高濃度を示した。特に NOx の時間値は3 日 1 時から5 日未明まで100ppb を超える状況が続き、4 日 9 時に 313ppb とこの期間の最高濃度となった。

表 5.3-1① 高濃度日前後の大気汚染物質濃度(日平均)

調査日	SPM	NOx	ох	昼間OX	NMHC
(平成21年)	μ g/m 3	ppb	ppb	ppb	0.01ppmC
10月26日 (月)	15	29	21	18	19
10月27日 (火)	28	35	22	28	31
10月28日(水)	40	41	20	30	37
10月29日 (木)	45	61	16	24	51
10月30日 (金)	40	34	31	33	31
10月31日 (土)	40	37	27	37	41
11月1日 (日)	14	15	31	30	14

注1)大阪府地域大気汚染常時監視測定データファイル(速報値)における 11 時から翌日 9 時までの平均値 注2)昼間 OX とは、11 時から 20 時までと翌日 6 時から 9 時までの平均値

高濃度日 10/27 10/30 10/26 10/28 10/29 10/31 11/2 $SPM(0.001\,mg/m3)$ NOx(ppb) 80 OX(ppb) NMHC(0.01pg 60 60 40 0 3 6 9 12 15 18 21 0 3 6 9 時刻

図 5.3-1① 高濃度日前後の大気汚染物質濃度(時間値)

表 5.3-1② 高濃度日前後の大気汚染物質濃度(日平均)

調査日	SPM	NOx	ОХ	昼間OX	NMHC
(平成22年)	$\mu\mathrm{g/m}^3$	ppb	ppb	ppb	0.01ppmC
5月19日 (水)	23	40	12	16	26
5月20日 (木)	73	65	25	32	35
5月21日 (金)	68	53	47	65	31
5月22日 (土)	45	20	74	79	16
5月23日 (日)	15	14	56	56	12

注1)大阪府地域大気汚染常時監視測定データファイル(速報値)における 12 時から翌日 10 時までの平均値 注2)昼間 OX とは、12 時から 20 時までと翌日 6 時から 10 時までの平均値

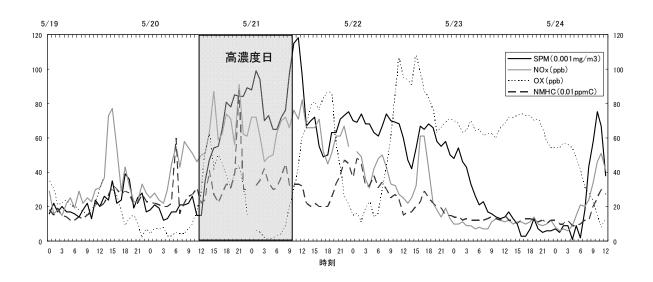


図 5.3-1② 高濃度日前後の大気汚染物質濃度(時間値)

表 5.3-1③ 高濃度日前後の大気汚染物質濃度(日平均)

	_	_			
調査日	SPM	NOx	ОХ	昼間OX	NMHC
(平成22年)	μ g/m 3	ppb	ppb	ppb	0.01ppmC
10月17日(日)	18	29	32	41	23
10月18日 (月)	35	33	42	51	25
10月19日 (火)	22	25	36	38	25
10月20日 (水)	25	30	29	37	27
10月21日(木)	16	23	37	37	18

注1)大阪府地域大気汚染常時監視測定データファイル(速報値)における 12 時から翌日 10 時までの平均値 注2)昼間 OX とは、12 時から 20 時までと翌日 6 時から 10 時までの平均値

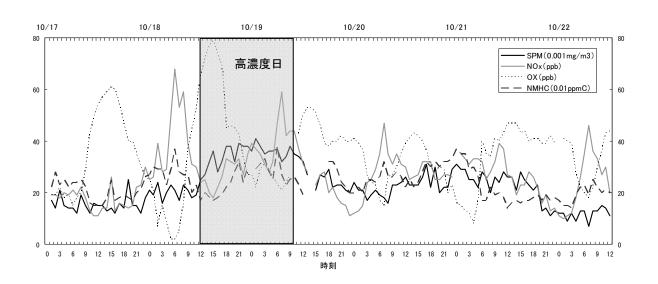


図 5.3-1③ 高濃度日前後の大気汚染物質濃度(時間値)

表 5.3-1④ 高濃度日前後の大気汚染物質濃度(日平均)

	調査日		NOx	ох	昼間OX	NMHC
(平成23	年)	μ g/m 3	ppb	ppb	ppb	0.01ppmC
2月3日	(木)	47	150	7	10	51
2月4日	(金)	65	96	13	20	45
2月5日	(土)	78	55	20	28	32
2月6日	(日)	81	71	29	34	26
2月7日	(月)	30	35	30	30	17
2月8日	(火)	45	72	14	16	33
2月9日	(水)	13	33	35	34	15

注1)大阪府地域大気汚染常時監視測定データファイル(速報値)における 13 時から翌日 11 時までの平均値 注2)昼間 OX とは、13 時から 20 時までと翌日 6 時から 11 時までの平均値

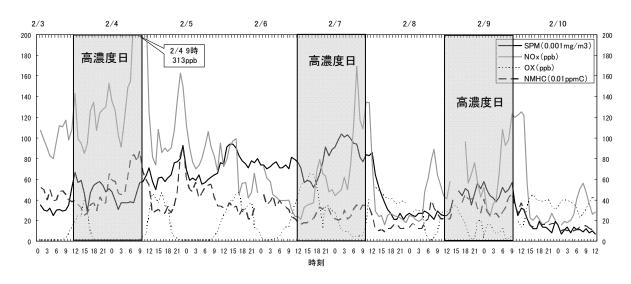
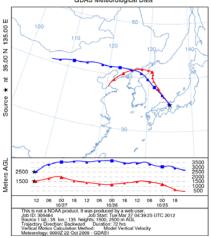


図 5.3-1④ 高濃度日前後の大気汚染物質濃度(時間値)

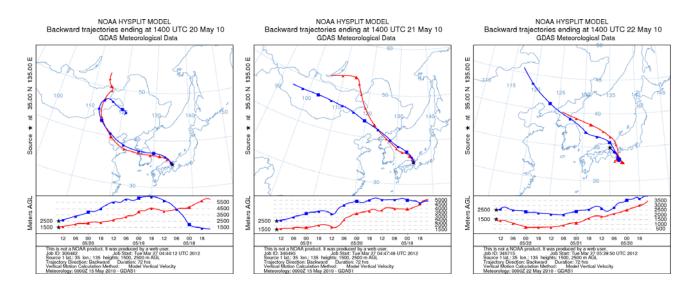
5-4 高濃度発生要因

5-1から5-3をふまえ、各高濃度日における PM2.5 の高濃度発生要因について考察する。

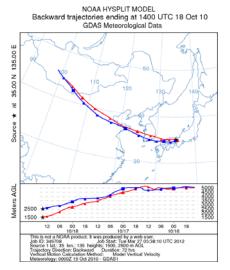
- ① 高濃度日前日から高気圧に覆われ晴れて気温が高く、光化学反応により二次生成粒子が生成しやすい状況にあった。さらに、NOx 濃度の時間変動にも表れているように、弱風が続き、逆転層が生じたことから、大気が拡散せずに汚染物質が蓄積しやすい状況にあったと考えられる。また、平成 21 年 10 月 27 日(高濃度日前々日)の SO₄²⁻濃度の急激な上昇は、図 5.4-1①の後方流跡線に示すように、大陸由来の気塊がこの日に到達しており、越境汚染の影響も考えられる。
- ② 高濃度日となった平成22年5月20日は、逆転層が形成されるとともに、風速が弱く、NOx 濃度の時間変動を考慮すると、大気が拡散せずに汚染物質が蓄積しやすい状況にあったと考えられる。さらに、図5.4-1②の後方流跡線に示すように、黄砂が観測された21日及び22日も含め、大陸由来の気塊が到達しており、越境汚染の影響も考えられる。
- ③ 高濃度日となった平成 22 年 10 月 18 日は、高気圧に覆われ晴れて気温が高く、0X の濃度変動にも表れているように、光化学反応により二次生成粒子が生成しやすい状況にあったため、 $S0_4^2$ 濃度のみが上昇したと考えられる。また、図 5.4-1③の後方流跡線に示すように、大陸由来の気塊が到達しており、越境汚染の影響も考えられる。
- ④ SPM の濃度変化を考慮すると、試料捕集を実施していない2月4日及び5日も PM2.5 の高濃度日であったと推測され、これらの高濃度日の間、弱風が続き、逆転層が生じたことから、大気が拡散せずに汚染物質が蓄積しやすい状況にあったと考えられる。特に3日は非常に風が弱く、NOx 濃度が非常に高かったことを考慮すると、汚染物質が蓄積しやすい状況にあり局所的な汚染が強かったと考えられる。さらに加えて、PM2.5 濃度が平成22年度の最高濃度となった6日は、気温が高く、OXの濃度変動にも表れているように、光化学反応により二次生成粒子が生成しやすい状況にあったと考えられる。その後、7日は、風速が2.0m/s以上となり、逆転層も解消されたため、PM2.5 濃度が減少したが、再び逆転層が生じ、8日に弱風となったため、再び大気が拡散せずに汚染物質が蓄積しやすい状況になったと考えられる。

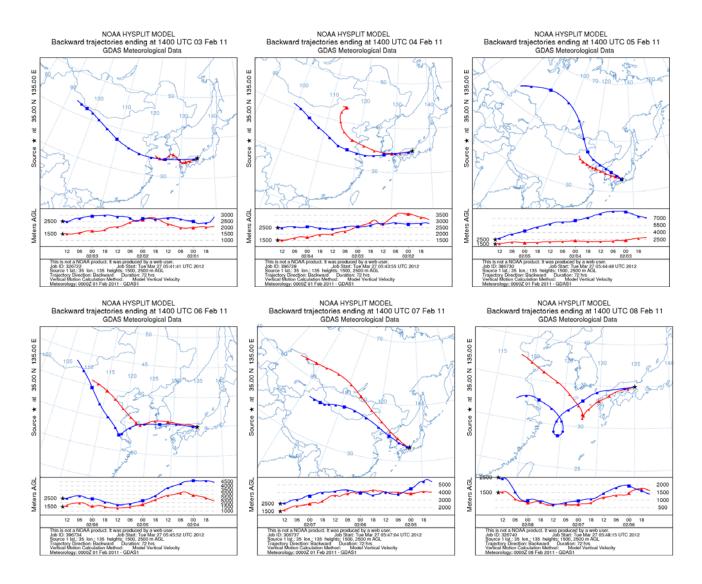

また、図 5.4-1④の後方流跡線に示すように、この間、大陸由来の気塊が到達しており、越境汚染の影響も考えられる。

以上のことから、PM2.5濃度が高濃度となる要因は


- ・ 弱風、逆転層の形成による汚染物質の蓄積
- 晴れて気温が高いために光化学反応が進むことによる二次生成粒子の生成
- ・ 大陸からの汚染物質の移流

で、これらの要因が複合的に重なり高濃度となると考えられる。




①平成 21 年 10 月 27 日

②平成22年5月20日から22日

③平成 22 年 10 月 18 日

④平成23年2月3日から8日

図 5.4-1 後方流跡線(3 日前、観測地点の高度 1500m・2500m)

6 まとめ

6-1 平成22年度調査結果のまとめ

- ・PM2.5 濃度の季節平均値は、春季に $13 \mu \text{ g/m}^3$ 、夏季に $14 \mu \text{ g/m}^3$ 、秋季に $14 \mu \text{ g/m}^3$ 及び 冬季に $24 \mu \text{ g/m}^3$ で、冬季に高かった。年度平均値は $16 \mu \text{ g/m}^3$ で、最高値は平成 $23 \div 2$ 月 6 日の $68 \mu \text{ g/m}^3$ であった。
- ・PM2.5 濃度が環境基準の年平均値である $15 \mu \text{ g/m}^3$ を超過した日数は年間 56 日中 22 日で、環境基準の日平均値である $35 \mu \text{ g/m}^3$ を超過した日数は 5 日であった。
- ・金属類濃度(17項目合計)の PM2.5 濃度に占める割合(日平均)は $1\sim5$ %程度で、季節 平均でみると、PM2.5 濃度に占める割合は冬季に高く、夏季に低かった。項目別でも、 V と Ni を除き、夏季に低い傾向があった。
- ・C1⁻と NO₃-は濃度変動が類似していた。濃度も PM2.5 濃度に占める割合も、季節平均すると、夏季に低く、冬季に高かった。これは、気温の高い時期にはガス状で存在し、逆に気温の低い時期には粒子化しているためと考えられる。
- ・SO₄²⁻はすべての季節において、濃度も PM2.5 濃度に占める割合も各イオン成分の中で 最も高かった。
- ・0C 濃度は平成 23 年 2 月 3 日及び 6 日に高く、 $10 \mu g/m^3$ 以上となり、季節平均値も冬季に最も高かった。PM2.5 濃度に占める割合は、季節平均すると、秋季に高く、日変動が大きかった。
- ・ディーゼル排気粒子の指標である EC 濃度の季節平均値は、他の季節に比べ冬季に高かった。PM2.5 濃度に占める割合は、日変動は大きかったが、季節変動はあまりなかった。
- ・WSOC 濃度の季節平均値は春季・夏季に比べ、秋季にやや低かった。OC 濃度に占める割合の季節平均値も、春季・夏季に比べ、秋季は低く、光化学反応が活発な春季・夏季の方が有機粒子に占める二次生成有機粒子の割合が多いと考えられる。一方、日平均値は、春季・秋季は日変動が大きかったが、夏季は安定していた。
- ・多環芳香族炭化水素類については、ベンゾ[ghi]ペリレンとジベンゾ[a,h]アントラセンは、濃度も PM2.5 濃度に占める割合も秋季に最も低く、その他の項目は、夏季に最も低かった。また、全ての項目において、夏季は春季・秋季に比べ、濃度の日変動が小さかった。
- ・季節別の発生源別寄与割合の推計によると、二次生成粒子の割合は 66~77%と各発生源の中で最も大きく、ついで自動車排出粒子が 13~14%であった。

6-2 平成21年度(森ノ宮)と平成22年度(淀工)調査結果の比較のまとめ

- ・春季の PM2.5 濃度は森ノ宮と淀工で季節平均値が同じであったが、夏季と冬季は淀工 の方が高く、秋季は森ノ宮の方が高かった。
- PM2.5 に含まれる主な成分は、SO₄²⁻、OC、NH₄+、NO₃-及びECである。
- ・ SO₄²-濃度の割合は、すべての季節において、淀工の方が高かった。気象条件が異なり 広域移流の影響も示唆されるため、自動車の影響については引き続き検討する必要が ある。
- ・ 0C 濃度の割合は、夏季に森ノ宮の方が高かった。季節別では、共に秋季に高かった。 0C と EC の質量濃度比は共に日変動が大きいことから、0C は、ディーゼル排ガスの指標である EC とは発生源が全く同一ではなく、自動車以外の影響も考えられる。
- ・ NO₃ 濃度の割合は、森ノ宮と淀工でほとんど違いがなかった。気象条件も異なるため、 自動車の影響については引き続き検討する必要がある。
- ・ EC 濃度の割合は、冬季を除き、淀工の方が高く、自動車の影響が考えられる。

6-3 高濃度日の特徴のまとめ

・PM2.5 濃度が高濃度となる要因は、

弱風、逆転層の形成による汚染物質の蓄積 晴れて気温が高いために光化学反応が進むことによる二次生成粒子の生成 大陸からの汚染物質の移流

で、これらの要因が複合的に重なり高濃度となると考えられる。

資 料 編

資料3(1) PM2.5 濃度及び PM2.5 中の各種成分濃度の分析結果 (H21、春季、大阪府環境農林水産総合研究所)

(単位: μ g/m³) 大阪府環境農林水産総合研究所 H22.4.12 H22.4.13 H22.4.14 H22.4.15 H22.4.18 期間平均値 定量下限値 質量濃度 12 17 9.8 22 25 18 11 11 11 6.5 12 8.0 5.4 14 13 160 59 180 180 210 金属類 ①金属類合計 0.71 0.98 0.79 0.0080 0.0080 0.040 0.0080 0.0080 0.025 ②イオン成分合計 5.0 7.8 4.4 13 10 5.5 5.2 4.8 3.3 5.9 2.4 9.6 6.5 OC12 0.21 0.24 0.11 0.15 0.32 0.18 0.0026 0.17 0.26 0.15 0.091 0.075 0.14 0.16 0.0051 2.2 4.2 4.8 1.2 1.8 0.28 1.3 0.27 0.42 1.1 0.27 0.60 0.62 0.54 0.18 0.40 0.24 0.20 0.15 0.058 0.41 0.46 0.036 0.33 0.44 0.28 0.23 0.14 0.23 0.33 0.32 0.24 0.16 0.26 0.26 0.039 ③炭素成分合計(全炭素:TC) 3.2 5.5 3.7 6.3 2.8

- 注1)表中の斜字は定量下限値未満であることを示し、定量下限値の1/2とした。
- 注2) 炭素成分の名称は表 2.2-4-2を参照。

資料3(2) PM2.5 濃度及び PM2.5 中の各種成分濃度の分析結果 (H21、夏季、大阪府環境農林水産総合研究所)

										亚成21名	E度·夏季						(単位	立:μ g/m³)
	大阪府環境農林	水産総合研究所	H21 8 20	H21 8 23	H21.8.24	H21 8 25	H21 8 26	H21 8 27	H21830	H21.8.31		H21.9.2	H21.9.3	H21.9.6	H21.9.7	H21.9.8	期間平均値	定量下限値
	質量	濃度	11	18	5.3	8.0	15	18	9.9	7.0	6.9	7.6	8.2	12	14	8.7	11	
	1	Na	-	60	-	-	-	120	_	-	-	-	-	-	-	-	-	120
		Mg	-	59	-	-	-	31	-	-	-	-	-	-	-	-	-	8.9
		Al	-	82	-	-	-	67	-	-	-	-	-	-	-	-	-	29
		K	-	350	-	-	-	130	-	-	-	-	-	-	-	-	-	9.5
		Ca	-	60	-	-	-	60	-	-	-	-	ı	ı	-	-	-	120
		Ti	-	6.8	-	-	-	13	-	-	-	-	-	-	-	-	-	4.4
		V	-	4.5	-	-	-	7.4	-	-	-	-	-	-	-	-	-	0.099
	A E ##	Cr		0.32	-	-	-	11	-	-	-	-	-	-	-	-	-	0.64
	金属類	Mn	_	13	-	-	-	9.5	-	-	-	-	-	-	-	-	-	1.7
	(ng/m³)	Fe Ni		220 1.6	-	-	-	120 8.2	-	-	-	-	-	-	-	-		19 0.23
	I	- Ni Cu		1.6	-	_	_	12	-	-		_	-			_	_	3.9
		Zn	_	110	-	_	-	16	- -	_		-		_		_	_	2.0
		As	_	2.6	-	-	-	0.71	_	-	_	-	-	_	_	-	-	0.054
		Cd	-	0.57	-	-	-	0.37	-	-	-	-	-	-	-	-	-	0.019
		Sb	_	2.7	-	-	-	1.6	-	-	-	-	-	-	-	-	-	0.051
		Ba	_	16	-	-	-	7.0	-	-	-	-	-	-	-	-	-	1.7
各		Pb	-	24	-	-	-	9.3	-	-	-	-	-	-	-	-	-	0.90
種	①金属類合計		-	1.0	-	-	-	0.62	-	-	-	-	-	-	-	-	-	_
成		CI⁻	0.075	0.017	0.050	0.035	0.011	0.019	0.043	0.088	0.11	0.071	0.030	0.018	0.017	0.037	0.045	0.0037
分濃	1	NO ₂ -	0.028	0.028	0.028	0.10	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.10	0.028	0.028	0.039	0.056
度		NO₃⁻	0.38	0.26	0.25	0.25	0.54	0.26	0.27	0.24	0.46	0.20	0.25	0.19	0.15	0.087	0.27	0.024
及	オ	SO ₄ 2-	3.4	4.5	1.2	1.5	5.5	4.6	2.7	1.7	1.4	2.1	1.7	3.1	3.8	2.6	2.9	0.028
	ン	Na⁺	0.28	0.10	0.11	0.10	0.11	0.13	0.21	0.19	0.24	0.061	0.11	0.12	0.13	0.12	0.14	0.012
	成分	NH ₄ *	1.4	1.7	0.53	0.71	2.2	1.9	1.0	0.73	0.59	0.90	0.75	1.3	1.5	1.1	1.2	0.045
	分	K⁺.	0.063	0.30	0.057	0.060	0.072	0.10	0.089	0.050	0.058	0.029	0.049	0.062	0.070	0.051	0.079	0.023
		Mg ²⁺ Ca ²⁺	0.037	0.038	0.0080	0.0080	0.0080	0.018	0.027	0.026	0.028	0.0080	0.0080 0.057	0.019	0.017 0.071	0.0080	0.018 0.072	0.016 0.028
	②イオン成分合		5.8	0.099 7.1	0.057 2.3	0.068	0.066 8.5	0.080 7.1	0.071 4.5	0.063	0.078 3.0	0.062 3.4	3.0	0.061 5.0	5.8	0.047 4.1	4.7	0.028
	01327777	OC ₁₂₀	0.15	0.099	0.047	0.069	0.063	0.11	0.014	0.0026	0.068	0.012	0.043	0.039	0.044	0.0026	0.055	0.0051
		HOC	4.4	4.8	1.9	3.0	3.5	5.0	2.3	1.9	2.1	2.6	2.9	3.4	3.7	1.8	3.1	0.27
	炭	OC	4.5	4.8	1.9	3.1	3.6	5.1	2.3	1.9	2.2	2.6	2.9	3.4	3.8	1.8	3.1	0.28
ĺ	素	EC ₅₅₀	0.48	0.78	0.14	0.32	0.46	0.95	0.24	0.20	0.17	0.21	0.28	0.31	0.37	0.16	0.36	0.036
l	炭素成分	EC ₇₀₀	0.48	0.78		0.32	0.46	0.95	0.24	0.20			0.28	0.43	0.37		0.40	0.036
	分	700	_		0.31			_			0.31	0.40				0.33		
	1	EC ₈₀₀	0.012	0.051	0.012	0.012	0.012	0.012	0.036	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.016	0.023
		EC	0.96	1.2	0.45	0.71	0.88	1.4	0.62	0.55	0.47	0.61	0.75	0.75	0.79	0.48	0.76	0.098
	③炭素成分合語	計(全炭素:TC)	5.5	6.1	2.4	3.8	4.4	6.5	2.9	2.4	2.7	3.3	3.7	4.2	4.6	2.3	3.9	_

- 注1)表中の斜字は定量下限値未満であることを示し、定量下限値の1/2とした。
- 注2) 炭素成分の名称は表2.2-4-2を参照。

資料3(3) PM2.5 濃度及び PM2.5 中の各種成分濃度の分析結果 (H21、秋季、大阪府環境農林水産総合研究所)

										T = 0.4 C	m 11.2						(単位	立: μg/m³)
	大阪府環境農林	水産総合研究所			· · · · · · · · · · · · · · · · · · ·			·		平成21年								T
			H21.10.22	H21.10.25	H21.10.26	H21.10.27	H21.10.28	H21.10.29	H21.11.1	H21.11.3	H21.11.4	H21.11.5	H21.11.8	H21.11.9	H21.11.10	H21.11.11	期間平均値	定量下限值
	質量		11	10	11	22	34	40	6.4	7.6	17	30	31	32	14	2.7	19	-
		Na				60	60	140	-	-	60	60	60	60	-	-	-	120
		Mg				27	46	43	-	-	4.5	4.5	18	4.5	-	-	-	8.9
		Al	_	-	_	71	100	190	-	-	15	15	160	61	-	-	-	29
		K	-	-	-	210 60	360 60	290 60	-	-	110 60	190 60	190 60	160 60	-	-		9.5 120
		Ca Ti	-	-	-	4.8	9.3	14	-	-	2.2	22	14	11	-	-	-	4.4
	金属額	V	+ -			0.70	1.2	7.5	-	-	3.9	5.3	6.1	3.4	-	-	-	0.099
		Cr	-	_		2.6	1.5	4.9	_	_	2.1	1.8	3.1	2.4	_	-		0.64
		Mn	+ -	_		8.0	1.7	31	_	_	16	23	8.2	15	_	-	_	1.7
	(ng/m³)	Fe	_	_		75	160	310	_	_	130	280	380	200	_	-	_	19
		Ni Ni	-	-	-	1.5	1.1	5.5	-	-	2.8	3.2	4.1	2.7	-	-	-	0.23
		Cu	-	-	-	2.0	5.3	13	-	-	9.4	11	9.8	9.6	-	-	-	3.9
		Zn	-	-	-	62	160	150	-	-	50	230	67	93	-	-	-	2.0
		As	-	-	-	1.7	2.0	1.6	-	-	1.2	3.7	0.60	0.47	-	-	-	0.054
		Cd	-	-	-	0.30	0.54	0.65	-	-	0.79	0.91	0.38	0.45	-	-	-	0.019
		Sb	_	_	_	2.0	3.5	4.7	_	_	2.4	4.0	2.9	3.1	-	_	-	0.051
		Ba	-	-	_	3.6	4.8	6.5	-	-	5.2	5.4	5.6	4.4	-	-	-	1.7
么		Pb	-	-	_	17	23	32	-	-	10	21	12	12	-	-	-	0.90
各 種 成	①金属類合計		-	-	-	0.61	1.0	1.3	-	-	0.49	0.92	1.0	0.70	-	-	-	-
分	1	Cl⁻	0.062	0.080	0.042	0.23	0.16	0.45	0.035	0.17	0.33	0.94	0.46	0.13	0.11	0.16	0.24	0.0037
濃		NO ₂ -	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.056
度		NO ₃ -	0.43	0.40	0.24	0.86	1.5	3.1	0.21	0.57	1.7	3.2	3.9	2.7	1.2	0.13	1.4	0.024
~	オン	SO ₄ 2-	2.0 0.11	1.6 0.072	2.2 0.070	7.4 0.11	9.6 0.12	8.3 0.15	1.6 0.050	0.74	1.8	4.8 0.10	6.2	5.3 0.068	2.5	0.29	3.9 0.085	0.028
		Na⁺ NH₄⁺	0.11	0.072	1.0	3.1	4.0	4.2	0.050	0.049	0.056 1.5	3.3	0.096 3.8	3.1	0.043 1.5	0.092	2.1	0.012
	成分	NH4°	0.086	0.87	0.063	0.18	0.33	0.23	0.75	0.044	0.088	0.16	0.14	0.13	0.062	0.078	0.12	0.045
	73	Mg²+	0.0080	0.0080	0.0080	0.18	0.023	0.020	0.028	0.0080	0.0080	0.0080	0.0080	0.0080	0.002	0.0080	0.011	0.023
		Ca ^{*+}	0.050	0.0000	0.065	0.017	0.023	0.020	0.052	0.0000	0.0000	0.066	0.0000	0.059	0.069	0.052	0.066	0.010
	②イオン成分合		3.7	3.2	3.7	12	16	17	2.8	2.2	5.4	13	15	12	5.5	0.87	7.9	-
		OC ₁₂₀	0.59	0.53	0.27	0.32	0.36	0.76	0.21	0.28	0.42	0.49	0.26	0.31	0.24	0.021	0.36	0.0051
		HOC	3.5	4.1	3.4	4.3	6.8	8.2	2.4	2.7	5.8	8.1	5.9	9.6	4.8	2.9	5.2	0.27
	炭	OC	4.1	4.6	3.6	4.6	7.2	9.0	2.6	3.0	6.2	8.6	6.1	9.9	5.0	2.9	5.5	0.28
	素	EC ₅₅₀	0.49	0.55	0.62	0.97	1.9	2.3	0.21	0.37	1.4	2.4	1.2	2.1	0.81	0.40	1.1	0.036
	素成分	EC ₇₀₀	0.48	0.51	0.63	0.47	0.31	0.52	0.41	0.41	0.34	0.28	0.23	0.34	0.49	0.34	0.41	0.039
	/3	EC ₈₀₀	0.012	0.10	0.071	0.012	0.012	0.012	0.044	0.012	0.012	0.012	0.030	0.012	0.012	0.012	0.026	0.023
		EC	0.97	1.1	1.2	1.4	2.2	2.9	0.62	0.78	1.8	2.6	1.4	2.4	1.3	0.74	1.5	0.098
	③炭素成分合調	計(全炭素: TC)	5.0	5.6	4.9	6.0	9.3	12	3.2	3.7	8.0	11	7.6	12	6.3	3.7	7.1	_

- 注1) 表中の斜字は定量下限値未満であることを示し、定量下限値の1/2とした。
- 注2) 炭素成分の名称は表2.2-4-2を参照。

資料3(4) PM2.5 濃度及び PM2.5 中の各種成分濃度の分析結果 (H21、冬季、大阪府環境農林水産総合研究所)

										W E#212	E度·冬季						(単位	Σ: μ g/m³)
:	大阪府環境農林	水産総合研究所	H22.1.21	L122 1 24	L 100 1 0E	H22.1.26	U22 1 27	H22.1.28	L100101	+ 成21± H22.2.1	H22.2.2	H22.2.3	H22.2.4	H22.2.7	H22.2.8	H22.2.9	期間平均値	定量下限値
	ee m										ПZZ.Z.Z		П22.2.4					正里下限 但
	質量	濃度	9.3	23	34	19	25	25	33	22	11	7.5	11	9.9	29	28	20	_
		Na	-	60	200	140	60	60	60	60	-	-	-	-	150	150	-	120
		Mg	_	4.5	38	31	13	20	11	4.5	-	-	-	-	17	12	-	8.9
		Al	-	15	76	100	38	39	36	15	-	-	-	-	15	47	-	29
		K		150	290	230	160	170	200	130	-	-	-	-	180	140	-	9.5
		Ca	_	60	60	60	60	60	60	60	-	-	-	-	60	60	-	120
		Ti V	-	2.2 3.7	9.5 5.1	9.3	5.3 4.7	6.7 7.4	2.2 3.7	2.2 2.4	-	-	-	-	7.2 3.3	6.9	-	4.4 0.099
		Cr		0.84	6.7	1.4	1.7	3.1	1.5	2.4	-	-	-	_	5.2	2.4	-	0.099
	金属類	Mn		7.0	35	1.4	1.7	14	111	13	-				31	15	_	1.7
	(ng/m³)	Fe	_	63	270	140	200	180	96	82	_	-	-	-	280	230	-	19
	(,	Ni Ni	-	1.5	7.2	1.2	2.8	3.7	1.8	1.8	-	-	-	-	4.4	5.6	-	0.23
		Cu	-	2.0	6.9	2.0	6.7	2.0	6.0	2.0	-	-	-	-	16	11	-	3.9
		Zn	_	65	110	88	96	76	86	66	-	-	-	-	130	130	-	2.0
		As	-	1.3	2.7	1.3	1.2	2.5	2.0	1.2	-	-	-	-	0.96	0.86	-	0.054
		Cd	-	0.43	0.96	0.50	0.43	0.84	0.61	0.42	-	-	-	-	0.47	0.60	-	0.019
		Sb	-	2.0	2.9	2.5	1.9	1.5	2.8	1.7	-	-	-	-	3.6	1.3	-	0.051
		Ba	-	2.5	5.6	4.8	4.1	4.4	3.3	1.7	-	-	-	-	7.6	6.4	-	1.7
各		Pb	_	11	36	19	16	20	19	14	-	-	-	-	19	17	-	0.90
· 種 成	①金属類合計		-	0.45	1.2	0.85	0.69	0.67	0.60	0.46	-	-	-	-	0.93	0.85	-	_
分	ر ا ا	Cl ⁻	0.10	0.77	1.7	0.87	0.75	0.92	1.7	1.2	0.11	0.18	0.13	0.68	1.5	1.3	0.85	0.0037
濃		NO ₂ -	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.056
度		NO₃⁻	1.1	3.5	6.5	2.3	5.3	3.8	7.7	5.3	0.74	0.61	1.7	1.1	7.2	6.7	3.8	0.024
~		SO4 ²⁻	2.1	2.8	4.8	3.0	2.9	4.7	4.4	3.5	3.3	1.3	2.4	0.93	1.5	2.8	2.9	0.028
	ン	Na⁺ NH₄⁺	0.098	0.094	0.15 4.2	0.16	0.12 2.9	0.13	0.070	0.058	0.16	0.12	0.12	0.22	0.18 3.2	0.098	0.13 2.5	0.012
	成分	NH₄*	0.042	2.4 0.16	0.23	2.1 0.21	0.17	3.2 0.15	4.6 0.17	3.4 0.11	1.5 0.087	0.77	1.5 0.10	0.98	0.17	3.5 0.091	0.13	0.045
	"	Mg ²⁺	0.0080	0.0080	0.016	0.0080	0.0080	0.018	0.0080	0.0080	0.0080	0.0080	0.0080	0.000	0.0080	0.0080	0.010	0.023
		Ca ²⁺	0.014	0.030	0.066	0.068	0.073	0.066	0.0000	0.046	0.045	0.000	0.041	0.014	0.068	0.052	0.044	0.018
	②イオン成分合		4.7	9.8	18	8.7	12	13	19	14	6.0	3.1	6.1	4.1	14	15	10	-
		OC ₁₂₀	0.31	0.69	0.58	0.58	1.3	0.44	0.89	0.53	0.21	0.21	0.23	0.34	0.90	1.2	0.60	0.0051
		HOC	2.1	4.4	6.3	4.6	5.8	6.1	6.3	4.1	2.7	2.2	2.7	2.9	4.8	6.1	4.4	0.27
	炭	OC	2.4	5.1	6.9	5.1	7.1	6.5	7.2	4.6	2.9	2.4	2.9	3.3	5.7	7.3	5.0	0.28
	素	EC ₅₅₀	0.35	1.3	2.1	1.3	1.9	1.6	1.9	1.2	0.52	0.48	0.50	0.61	2.1	2.5	1.3	0.036
	炭素成分	EC ₇₀₀	0.37	0.24	0.19	0.31	0.35	0.31	0.30	0.35	0.30	0.11	0.21	0.24	0.12	0.37	0.27	0.039
	7	EC ₈₀₀	0.012	0.012	0.012	0.012	0.012	0.012	0.039	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.013	0.023
		EC EC	0.72	1.6	2.3	1.6	2.3	1.9	2.2	1.6	0.81	0.59	0.71	0.85	2.2	2.9	1.6	0.028
	③炭素成分合調		3.1	6.6	9.2	6.8	9.4	8.4	9.4	6.1	3.8	3.0	3.6	4.1	8.0	10	6.5	-

- 注 1) 表中の約字は定量下限値未満であることを示し、定量下限値の1/2とした。
- 注2) 炭素成分の名称は表 2.2-4-2 を参照。

資料4(1) PM2.5 濃度及び PM2.5 中の各種成分濃度の分析結果 (H22、春季、淀川工科高校)

(単位: μ g/m³) 平成22年度・春季 淀川工科高校 H22.5.13 H22.5.16 H22.5.17 H22.5.19 H22.5.20 H22.5.23 H22.5.24 H22.5.25 期間平均値 定量下限値 質量濃度 2.7 14 10 7.8 46 2.3 23 23 2.8 8.0 13 13 13 130 140 金属類 (ng/m³) 93 3.9 ①金属類合計 0.20 0.087 0.26 0.26 0.35 0.031 0.13 0.03 0.14 0.11 0.090 Na¹ 0.0055 0.055 0.035 0.086 0.16 0.0055 0.0055 0.023 0.029 0.046 0.048 0.0085 ②イオン成分合計 1.4 6.7 5.0 3.3 2.5 33 0.90 13 16 0.72 1.1 4.0 7.4 6.4 7.2 WSOC 0.65 欠測 1.5 6.6 0.83 3.8 0.41 3.1 0.40 1.9 0.044 1.2 0.090 3.1 0.49 0.018 0.71 0.70 0.71 2.6 2.0 1.6 0.018 0.15 0.76 0.73 0.036 0.34 0.55 0.74 0.49 0.45 0.45 0.20 0.039 0.012 0.041 0.014 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 ③炭素成分合計(全炭素:TC=OC+EC) 2.0 5.3 4.4 4.0 5.6 10 2.4 7.1 6.0 1.7 1.0 3.0 4.2 5.2 4.4 多環芳香族 炭化水素類 0.062 0.065 0.41 0.069 (ng/m^3) 0.16 0.060 0.30 0.050 0.050 0.050 0.11 0.21 0.65 0.42 3.2

注1) 表中の斜字は定量下限値未満であることを示し、定量下限値の1/2とした。

注2) 炭素成分の名称は表2.2-4-2を参照。

資料 4(2) PM2.5 濃度及び PM2.5 中の各種成分濃度の分析結果 (H22、夏季、淀川工科高校)

流川工	科高校									F度·夏季							
ルバー	-11 ID TX	H22.8.5	H22.8.8	H22.8.9	H22.8.10	H22.8.11	H22.8.12	H22.8.15	H22.8.16	H22.8.17	H22.8.18	H22.8.19	H22.8.22	H22.8.23	H22.8.24	期間平均値	定量下
質量	濃度	6.7	3.9	4.7	6.0	7.7	15	13	14	9.7	18	27	28	25	19	14	-
	Na	-	-	-	-	-	-	-	-	-	50	47	64	100	57	-	2
	Mg	-	-	-	-	-	-	-	-	-	5.5	5.5	21	22	12	-	1
	Al	ı	-	-	-	-	-	-	-	-	16	16	16	16	16	-	_
	K	1	-	-	-	-	-	-	-	-	58	53	150	100	52	-	~
	Ca	-	-	-	-	-	-	-	-	-	16	16	16	16	16	-	
	Ti	-	-	-	-	-	-	-	-	-	2.2	2.2	2.2	2.2	2.2	-	4
	V	-	-	-	-	-	-	-	-	-	2.0	5.5	11	11	7.9	-	0.
金属類	Cr Mn		-			-		-	-	-	1.5	1.5	1.5	1.5	1.5		-
並周規 (ng/m³)	Fe Min			-		-	-		-		2.2 19	2.3 19	5.3 51	6.4 87	3.3	_	
(rig/iii)	Ni			-	_	-					0.65	0.65	3.6	3.7	2.6		-
	Cu	_	_	-	_	_	-	_	_		2.6	2.6	2.6	2.6	10	-	
	Zn	_	-	-	-	-	-	_	-	_	20	16	51	45	30	-	1
	As	-	-	-	-	-	-	-	-	-	0.42	0.73	1.1	1.0	0.59	-	C
I	Cd	-	-	-	-	-	-	-	-	-	0.059	0.14	0.29	0.29	0.13	-	0.
I	Sb	-	-	-	-	-	-	-	-	-	1.1	0.57	1.2	1.1	0.75	-	(
	Ba	-	-	-	-	-	-	-	-	-	1.5	0.65	9.9	6.9	3.3	-	
	Pb	-	-	-	-	-	-	-	-	-	6.9	9.7	16	18	- 11	-	
①金属類合計		-	-	-	-	-	-	-	-	-	200	200	430	450	240	-	
	Cl ⁻	0.16	0.060	0.035	0.026	0.13	0.015	0.084	0.0089	0.0053	0.0072	0.0079	0.016	0.0063	0.052	0.043	0.0
	NO ₂ -	0.031	0.031	0.031	0.031	0.065	0.031	0.031	0.031	0.031	0.031	0.12	0.071	0.031	0.031	0.043	0.
1	NO₃⁻	0.18	0.11	0.089	0.18	0.15	0.41	0.18	0.16	0.077	0.069	0.12	0.20	0.11	0.16	0.16	0
す	SO ₄ 2-	0.79	0.55	0.60	1.0	2.2	4.3	6.4	5.1	2.4	6.9	13	12	11	8.4	5.3	0
が成	Na*	0.20	0.10	0.046	0.052	0.16	0.14	0.20	0.089	0.066	0.088	0.16	0.16	0.13	0.12	0.12	0
成分	NH₄⁺	0.28	0.19	0.24 0.028	0.35 0.096	0.92	1.7 0.15	2.3 0.14	1.9 0.12	0.99	2.4 0.056	4.5 0.077	4.2 0.20	3.8 0.11	3.1 0.066	1.9 0.094	0.0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Mg ²⁺	0.082	0.093	0.028	0.096	0.036	0.029	0.14	0.021	0.0085	0.0085	0.077	0.20	0.0085	0.0065	0.094	0
	Ca ² *	0.024	0.003	0.068	0.042	0.018	0.029	0.037	0.021	0.0083	0.008	0.034	0.034	0.0083	0.000	0.018	0
②イオン成分合	②イオン成分合計		1.2	1.1	1.8	3.7	6.8	9.4	7.5	3.7	9.6	19	17	15	12	7.8	Ť
	WSOC	0.95	1.2	1.6	1.8	1.2	2.3	1.3	2.2	1.9	2.5	2.0	3.2	2.7	1.8	1.9	1
	OC ₁₂₀	0.049	0.012	0.012	0.012	0.012	0.039	0.012	0.012	0.012	0.095	0.012	0.033	0.036	0.012	0.025	0
	HOC	3.9	3.1	3.0	3.3	2.7	4.4	2.4	4.0	3.7	4.6	3.8	5.3	4.6	3.2	3.7	ď
炭素	OC	3.9	3.1	3.0	3.3	2.7	4.5	2.4	4.0	3.7	4.6	3.8	5.3	4.7	3.2	3.7	
成	EC ₅₅₀																_
分		0.73	0.39	0.38	0.59	0.47	1.3	0.35	0.84	0.48	0.55	0.49	0.92	1.1	1.3	0.71	0
	EC ₇₀₀	0.86	0.50	0.90	1.1	1.0	0.62	0.59	0.63	0.78	0.70	0.51	0.44	0.73	0.55	0.71	0
I	EC ₈₀₀	0.082	0.12	0.072	0.029	0.041	0.012	0.085	0.012	0.012	0.026	0.012	0.067	0.012	0.012	0.042	0
	EC	1.6	0.88	1.3	1.7	1.5	2.0	1.1	1.5	1.3	1.3	1.2	1.8	2.3	1.9	1.5	0
③炭素成分合	計(全炭素:TC=OC+EC)	5.5	4.0	4.3	5.0	4.2	6.4	3.5	5.5	4.9	5.9	5.1	7.1	7.0	5.1	5.3	L
I	ベンゾ(a)ピレン	0.19	0.026	0.086	0.18	0.12	0.19	0.25	0.18	0.14	0.13	0.15	0.21	0.32	0.19	0.17	0
I	ベンゾ(b)フルオランテン	0.32	0.10	0.10	0.27	0.10	0.44	0.24	0.10	0.41	0.29	0.43	0.66	0.43	0.27	0.30	0
多環芳香族	ベンゾ(k)フルオランテン ベンゾ(ghi)ペリレン	0.10	0.13	0.13	0.10	0.10	0.22	0.17	0.15	0.062	0.12 0.24	0.11 0.24	0.25	0.20	0.20	0.15	0
多項方省族 炭化水素類		0.067	0.020	0.49	0.081	0.099	0.55	0.58	0.02	0.045	0.075	0.12	0.08	0.70	0.48	0.092	0.
灰化水気 (ng/m³)	ベンゾ(a)アントラセン ベンゾ(e)ピレン	0.067	0.020	0.068	0.081	0.099	0.12	0.14	0.087	0.045	0.075	0.12	0.07	0.18	0.10	0.092	0.
(11g/111)	ジベンゾ(a,h)アントラセン	0.16	0.26	0.15	0.28	0.000	0.050	0.29	0.11	0.23	0.18	0.28	0.24	0.45	0.28	0.21	0
I	インデノー(1,2,3-cd)ピレン	0.050	0.21	0.15	0.15	0.24	0.030	0.13	0.11	0.030	0.13	0.030	0.15	0.030	0.14	0.12	(
I	ベンゾ(j)フルオランテン	0.21	0.65	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.65	0.21	0.21	0.21	0.65	
(7) 名理羊禾族	炭化水素類合計	2.4	2.0	1.9	2.4	2.1	2.7	2.6	2.2	2.0	2.0	2.2	3.1	3.2	2.5	2.4	

注1) 表中の*斜字*は定量下限値未満であることを示し、定量下限値の 1/2 とした。

注2) 炭素成分の名称は表2.2-4-2を参照。

資料 4(3) PM2.5 濃度及び PM2.5 中の各種成分濃度の分析結果 (H22、秋季、淀川工科高校)

										平成22年	度・秋季						(単位	±ī:μg/m³
	淀川工	料高校	H22.10.17	H22.10.18	H22.10.19	H22.10.20	H22.10.21	H22.10.24	H22.10.25			H22.10.28	H22.10.31	H22.11.1	H22.11.3	H22.11.4	期間平均値	定量下限值
	質量	濃度	18	36	19	22	13	16	12	3.9	7.8	4.4	10	11	9.7	20	14	-
		Na	130	130	150	130	-	97	-	-	-	-	-	-	-	120	-	20
		Mg	17	38	26	21	-	5.5	-	-	-	-	-	1	1	16	-	- 11
		Al	56	96	35	16		32	-	_	-	-	-	_	-	16	_	31
		K	130	350	140	170		93			-	-	-	-	-	150		8.2
		Ca	34	89	49	47		16	-	-	-	-	-	-	-	79	-	31
		Ti V	5.2 0.87	8.5 0.87	2.2 1.6	5.1 1.4	-	2.2 1.3	-	-	-	-	-	-	-	6.0 2.1	-	4.4
		- V Cr	1.5	1.5	1.5	1.5	-	1.5	-		-	 -			- -	1.5	_	0.086 2.9
	金属類	Mn	8.2	24	10	14	- -	4.6	-		- -	- -			- -	22	-	1.3
	(ng/m³)	Fe	95	200	110	140	-	73	-	-	-	-	_	-	_	200	_	37
		Ni	0.65	0.65	0.65	0.65	-	0.65	-	-	-	-	-	-	-	2.1	-	1.3
		Cu	9.8	13	2.6	5.3	-	7.6	-	-	-	-	-	-	-	12	-	5.1
		Zn	38	93	40	57	-	36	-	-	-	-	-	-	-	58	-	4.1
	I	As	1.4	3.4	1.2	1.3	-	0.72	-	-	-	-	-	-	-	1.5	_	0.23
	I	Cd	0.38	0.95	0.19	0.30	-	0.079	-	-	-	-	-	-	-	0.31	-	0.030
	I	Sb	2.0	3.1	1.3	1.9	-	1.4	-	-	-	-	-	-	-	3.1	_	0.27
		Ba	4.8	5.3	2.7	2.8	-	4.2	-	-	-	-	-	-	-	5.6	-	1.3
	①金属類合計	РЬ	24 560	49 1100	14 590	15 630	-	10 390	-	-	-	-	-	-		24 720		2.1
	①並 廣規 口 前	l Ci	0.029	0.025	0.018	0.021	0.042	0.22	0.052	0.076	0.078	0.035	0.17	0.075	0.13	0.29	0.091	0.0038
		NO ₂ -	0.023	0.023	0.010	0.021	0.042	0.031	0.032	0.35	0.070	0.033	0.031	0.013	0.13	0.23	0.031	0.062
	1	NO ₃ -	0.81	1.0	0.37	0.67	0.20	1.9	1.8	0.16	0.48	0.26	1.6	0.51	0.67	2.2	0.90	0.065
	,	SO42	5.0	14	5.6	6.7	4.5	2.5	1.5	0.54	0.99	0.43	1.1	1.8	0.96	1.8	3.4	0.039
各	ン	Na*	0.074	0.13	0.15	0.11	0.17	0.081	0.038	0.092	0.11	0.045	0.040	0.12	0.086	0.080	0.095	0.022
種	成	NH₄⁺	2.3	5.6	2.3	2.9	1.8	1.8	1.3	0.26	0.64	0.22	1.2	0.93	0.66	1.7	1.7	0.0093
成	分	K*	0.10	0.33	0.12	0.13	0.075	0.081	0.042	0.029	0.043	0.028	0.04	0.095	0.078	0.14	0.096	0.011
分		Mg ²⁺	0.0085	0.0085	0.0085	0.018	0.033	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.0085	0.011	0.017
濃度		Ca ²⁺	0.051	0.086	0.075	0.062	0.087	0.10	0.055	0.049	0.031	0.062	0.045	0.040	0.056	0.079	0.063	0.014
泛	②イオン成分合	hitt	8.7	21	8.7	11	7.0	6.6	4.9	1.6	2.4	1.3	4.2	3.6	3.0	6.6	6.4	-
		WSOC	2.0	3.3	2.4	3.1	0.74	2.7	1.5	0.61	0.97	0.69	1.6	1.2	1.7	3.3	1.8	-
		OC ₁₂₀	0.34	0.38	0.3	0.3	0.16	0.45	0.28	0.095	0.31	0.23	0.43	0.34	0.22	0.45	0.31	0.023
	炭	HOC	4.8	5.9	5.0	6.0	2.2	5.4	3.9	1.4	2.6	1.9	3.3	3.7	4.1	7.2	4.1	0.41
	素	OC	5.2	6.3	5.3	6.3	2.4	5.9	4.2	1.5	2.9	2.1	3.8	4.0	4.3	7.6	4.4	0.44
	成	EC ₅₅₀	0.91	1.5	0.85	1.2	0.31	0.98	1.2	0.13	0.37	0.29	0.61	1.0	0.65	2.2	0.87	0.036
	分	EC ₇₀₀	0.49	0.41	0.46	0.43	0.47	0.48	0.93	0.26	0.35	0.58	0.80	0.63	0.46	0.32	0.50	0.039
		EC ₈₀₀	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.023
		EC	1.4	1.9	1.3	1.6	0.772	1.5	2.1	0.39	0.72	0.87	1.4	1.6	1.1	2.6	1.4	0.023
	③炭素成分合	計(全炭素: TC=OC+EC)	6.5	8.2	6.6	7.9	3.1	7.4	6.3	1.8	3.7	3.0	5.2	5.7	5.5	10	5.8	-
		ベンゾ(a)ピレン	0.13	0.31	0.18	0.14	0.026	0.44	0.20	0.026	0.19	0.062	0.14	0.23	0.48	0.18	0.20	0.052
	I	ベンゾ(b)フルオランテン	0.10	0.70	0.40	0.14	0.020	0.44	0.45	0.10	0.19	0.002	0.14	0.23	1.1	0.10	0.43	0.032
	I	ベンゾ(k)フルオランテン	0.17	0.70	0.40	0.30	0.10	0.02	0.43	0.074	0.13	0.10	0.41	0.48	0.30	0.40	0.43	0.056
	多環芳香族	ベンゾ(ghi)ペリレン	0.24	0.53	0.52	0.24	0.24	0.24	0.64	0.24	0.24	0.24	0.55	0.52	0.77	0.12	0.39	0.47
	炭化水素類	ベンゾ(a)アントラセン	0.09	0.19	0.10	0.11	0.05	0.24	0.16	0.02	0.099	0.068	0.11	0.18	0.29	0.13	0.13	0.040
	(ng/m³)	ベンゾ(e)ピレン	0.060	0.37	0.28	0.18	0.060	0.63	0.40	0.060	0.14	0.060	0.29	0.51	0.75	0.40	0.30	0.12
	I -	ジベンゾ(a,h)アントラセン	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.10
	I	インデノー(1,2,3-cd)ピレン	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.42
		ベンゾ(j)フルオランテン	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	1.3
	④多環芳香族/	炭化水素類合計	1.7	3.3	2.6	2.3	1.4	3.3	3.0	1.4	2.2	1.5	2.5	3.0	4.6	2.4	2.5	-

注1)表中の*斜字*は定量下限値未満であることを示し、定量下限値の1/2とした。

注2) 炭素成分の名称は表2.2-4-2を参照。

資料4(4) PM2.5 濃度及び PM2.5 中の各種成分濃度の分析結果 (H22、冬季、淀川工科高校)

(単位: μ g/m³) 平成22年度・冬季 淀川工科高校 H23.2.9 H23.2.13 H23.2.14 H23.2.15 H23.2.16 期間平均値 定量下限値 質量濃度 44 68 22 36 14 13 16 23 10 19 12 20 24 170 190 150 130 110 110 120 100 140 金属類 (ng/m³) 6.5 45 140 4.6 ①金属類合計 0.79 0.031 9.2 1.6 *0.031* 0.51 0.42 0.031 3.9 4.1 0.031 1.7 3.8 0.45 15 0.03 i 0.062 1.9 0.065 Na¹ 0.59 0.61 0.14 0.099 0.060 0.086 0.16 0.052 0.12 0.28 0.011 0.0085 0.0085 0.0083 0.0085 0.020 ②イオン成分合計 28 47 17 25 8.0 8.5 8.1 9.6 14 5.0 10 7.5 12 15 WSOC HOC 6.0 4.1 4.4 0.41 7.7 3.7 0.77 3.4 0.61 5.6 5.1 1.4 4.3 3.9 1.3 0.52 0.94 1.0 1.9 0.59 1.4 0.036 0.27 0.29 0.29 0.32 0.42 0.36 0.43 0.30 0.44 0.40 0.29 0.37 0.039 0.013 0.012 0.012 0.012 0.032 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.023 ③炭素成分合計(全炭素: TC=OC+EC) 15 16 6.5 11 3.8 4.8 5.4 5.8 8.3 4.9 7.1 4.4 6.8 7.6 多環芳香族 炭化水素類 (ng/m³) ゾ(a.h)アントラセン インデノー(1,2,3-cd)ピレン ヾンゾ(j)フルオランテン

注1)表中の斜字は定量下限値未満であることを示し、定量下限値の1/2とした。

注2) 炭素成分の名称は表2.2-4-2を参照。