PM₂₅の近畿地方におけるローカルな要因による高濃度について

〇山本勝彦 $^{1)}$, 中戸靖子 $^{1)}$, 三田村徳子 $^{2)}$, 山神真紀子 $^{3)}$, 加藤三奈 $^{4)}$, 西山亨 $^{5)}$, 平澤幸代 $^{6)}$, 中坪良平 $^{7)}$, 板野泰之 $^{8)}$, 菅田誠治 $^{9)}$, 大原利真 $^{9)}$

¹⁾ (地独)大阪府立環境農林水産総合研究所, ²⁾ 滋賀県琵琶湖環境科学研究センター, ³⁾ 名古屋市環境科学調査センター, ⁴⁾ 愛知県環境調査センター, ⁵⁾ 三重県保健環境研究所(現三重県企業庁), ⁶⁾ 京都府保健環境研究所(現京都市衛生環境研究所), ⁷⁾ (公財)ひょうご環境創造協会兵庫県環境研究センター, ⁸⁾ 大阪市立環境科学研究所, ⁹⁾ (独)国立環境研究所

1. はじめに

 $PM_{2.5}$ 汚染は、東アジア規模の広域移流によるものが国民の注目を浴び、ともすれば国内発生源の問題が後景におかれている感がある。しかし、国内由来の汚染の寄与は小さくない。ここでは、2012 年 7月下旬に発生した高濃度に着目し、近畿地方の都市型汚染としての $PM_{2.5}$ の解析を行った。

2. 使用したデータ

ここで使用した濃度データは、後述する環境省環境研究総合推進費による測定サイトのうち、東大阪、滋賀の測定値及び「そらまめ君」より取得した東海・近畿各府県の常時監視速報データを使用した。PM2.5 成分分析データについては、同推進費による分析データ(東大阪、滋賀)を用いた。

3. 結果と考察

3-1. 高濃度の特徴

2012 年 7 月 25~30 日に西日本を中心に大気汚染の高濃度が発生した(図 1)。高濃度は、都市域に発生している。この期間、西日本には、高気圧が停滞し、安定した気象条件であった。

25~30 日の大阪府域での PM_{2.5} 濃度常時監視時間値の推移を図 2 に示す。Ox ほど明瞭ではないが、昼に高く夜に低い日変化をみることができる。また、東

図 1. 2012 年 7 月 28 日 19 時の P M_{2.5} 濃度 分布

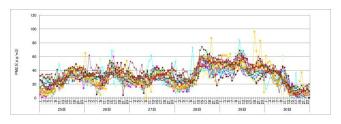


図 2. 2012 年 7 月 25-30 日大阪府域 P M₂₅ 濃度推移

海・近畿地域常時監視局の $PM_{2.5}$ 濃度時間値の相関をとると、ごく近傍の局間で、相関係数が 0.8 を超える ところがあるものの、東海・近畿のスケールでは相関が低い。一方、広域移流の影響下の汚染の場合は、広い範囲で 0.8 を超える相関が得られる例が多い。

これらのことから、この期間の高濃度は、ローカルな要因の寄与が大きいものと考えることができる。

3-2. オキシダントとの比較

図 3 に寝屋川市役所局(大阪府)の $PM_{2.5}$ と Ox の散布図を示す。ここで、 $PM_{2.5}$ の日変化が明瞭な $25\sim28$ 日についてみると、強い相関を示している。この傾向は、近畿地方の広い範囲でみられる。

Ox 濃度を PM_{2.5} 成分分析データと比較すると、東大阪では SO₄²(図 4)や OC との間で相関を示した。PM_{2.5}

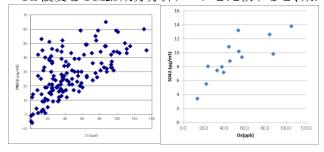


図 3. PM_{2.5} と 0x 濃度 図 4. PM_{2.5} 中 SO₄²⁻と 0x (寝屋川市役所局) (東大阪)

濃度が低い滋賀では相関は低い。いずれも二次生成の 指標となる物質である。

これらのことは、PM_{2.5}と Ox の生成が強い関係にあり、都市部ほどその関係が強いことを示している。

謝辞

本研究は、環境省環境研究総合推進費【5B-1101】 により実施された。