平成 25 年度

微小粒子状物質成分分析結果報告書

平成27年2月

目 次

		査概																														
		調査																														
		調査																														
	_	定地																														
		料捕	-																													
		析項																														
(4)大	阪府	域 <i>0</i>)測	定	地点	点は	i C	と	Ü	請	式》	料	捕	集	其	胴	引 :			٠.					٠.	 ٠.		 ٠.			3
		料捕																														
		試料																														
		分析																														
		M _{2.5}																														
	_	オン		_																												
	_	機元																														
		素成																														
(5検	出下	限値	直及	び	定量	量-	下图	很'	値	į.		٠.				٠.	٠.			٠.					٠.	 	•	 ٠.		٠.	11
		査結	-																													
		気象																														
		ΡМ																														
		M _{2.5}																														
(2)自	動測	定榜	髪に	ょ	る F	> l	1 12	. 5	濃	扂	更	لح	の	相	具		٠.			٠.					٠.	 	•	 ٠.		٠.	23
		成分																														
		平均																														
(2)季	節平	均·										٠.	•			٠.	٠.			٠.					٠.	 	•	 ٠.		٠.	28
		な成																														
		機元																														
		平成																														
		РΜ																														
		M _{2.5}																														
		濃度																														
(6)	まと	め・										٠.	•			٠.	٠.			٠.					٠.	 	•	 ٠.		٠.	76
資料	料																															
Ì	資料	1	PΝ																													
Ì	資料	-2	PΝ	/1 _{2.5}	質:	量》	農店	きん	及	Ű	冷	<u></u>	重	成	分	清	豊厚	₹0	ַ קַ	夏:	季	分	析	結	拝	₹ .	 ٠.		 ٠.			82
-	資料		PΝ																													
į	資料	4	ΡN	/ا، د	質:	量消	農店	きん	及	Ü	冷	<u></u>	楎	成	分	清	豊厚	₹0	D=	冬:	季	分	析	綿	拝	₹.	 		 			88

1. 調査概要

(1)調査目的

微小粒子状物質(PM_{2.5})は、平成 21 年 9 月に環境基準が定められたが、多くの地点で環境基準 を達成できていない状況にあるため、削減対策を検討する必要がある。

しかし、 $PM_{2.5}$ は、発生源から直接排出された粒子(一次粒子)と、大気中に排出されたガスが反応して生成した粒子(二次粒子)から成り、発生源も多岐にわたっている。さらに、どのような発生源から排出された大気汚染物質がどの程度 $PM_{2.5}$ の生成に寄与しているか現状では明らかになっていない。

そこで、 $PM_{2.5}$ に含まれる成分濃度の地域特性や $PM_{2.5}$ 濃度が高くなる原因、さらに、発生源の種類や寄与割合を明らかにし、地域毎の特性に応じた効果的な $PM_{2.5}$ 対策を検討するため、大阪府における大気汚染の常時監視の一環として $PM_{2.5}$ に含まれる成分の分析を実施している。

なお、3. (3) および (4) においては、府域における詳細な解析を行うため、 $PM_{2.5}$ に含まれる成分濃度の地域特性や $PM_{2.5}$ 濃度が高くなる原因について、今回調査を行った地点以外に政令市(大阪市、堺市、豊中市、吹田市、東大阪市および八尾市)の調査結果もあわせてとりまとめた。

(2)調査内容

調査は、微小粒子状物質($PM_{2.5}$)の成分分析ガイドライン(平成 23 年 7 月,環境省)及び大気中微小粒子状物質($PM_{2.5}$)成分測定マニュアル(平成 24 年 4 月(平成 25 年 6 月一部改訂),環境省)に準拠して実施した。

測定地点

試料捕集は、表 1-1 に示すとおり、一般環境大気測定局 2 地点、自動車排出ガス測定局 1 地点の 3 地点で実施した。測定地点の位置を図 1-1 に示す。

	以一一两足也 無											
局種別	地点	所在地	周辺状況									
一般環 境大気 測定局	泉大津市役所 (以下、「泉大津」と記す。) 大東市役所 (以下、「大東」と記す。)	泉大津市東雲町 9-12 大東市谷川 1-1-1	地点の近傍に目立った固定発生源はないが、 北西から北の方向 1 km 付近に堺泉北臨海工 業地域が広がる。 地点の近傍に目立った固定発生源はないが、 東約 1.3 km には、南北方向に国道 170 号が走 っている。									
自動車 排出ガス 測定局	外環河内長野 (以下、「河内長野」と記す。)	河内長野市西之 山町2-21	地点の近傍に目立った固定発生源はないが、 前面には国道 170 号があり、平成 22 年度全 国道路・街路交通情勢調査(道路交通センサス)によると、昼間 12 時間の交通量は 28,933 台、大型車混入率は 10.3%である。									

表 1-1 測定地点

図 1-1 測定地点位置図

② 試料捕集

試料捕集は、季節ごとに 14 日間実施した。表 1-2 に平成 25 年度の試料捕集期間を示す。

捕集装置は1地点につき2台設置して、大気を23時間(10時から翌日9時)連続吸引し、テフロンろ紙及び石英繊維ろ紙上にPM_{2.5}を捕集した。なお、泉大津及び大東では、23時間の捕集後にろ紙を自動で交換する機能を備えた装置を、河内長野では、ろ紙を手動で交換する装置を使用した。

表 1-2 試料捕集期間

季節	期間
春季	平成 25 年 5 月 8 日(水)~ 5 月 22 日(水)
夏季	平成 25 年 7 月 24 日(水)~ 8 月 7日(水)
秋季	平成 25 年 10 月 23 日(水)~11 月 6 日(水)
冬季	平成 26 年 1 月 22 日(水)~ 2 月 5日(水)

※1日(10時から翌日9時の23時間)×14回×4季節

③ 分析項目

- a PM25質量濃度
- b イオン成分 (9項目)

塩化物イオン(Cl¯)、硝酸イオン(NO $_3$ ¯)、硫酸イオン(SO $_4$ ²¯)、シュウ酸イオン(C $_2$ O $_4$ ²¯)、ナトリウムイオン(Na $^+$)、アンモニウムイオン(NH $_4$ $^+$)、カリウムイオン(K $^+$)、マク゛ネシウムイオン(Mg² $^+$)及びカルシウムイオン(Ca² $^+$)

c 無機元素成分(29項目)

ナトリウム (Na) 、アルミニウム (AI) 、カリウム (K) 、カルシウム (Ca) 、スカンシ゛ウム (Sc) 、チタン (Ti) 、バ・ナシ゛ウム (V) 、クロム (Cr) 、マンカ゛ン (Mn) 、鉄 (Fe) 、コハ゛ルト (Co) 、ニッケル (Ni) 、銅 (Cu) 、亜鉛 (Zn) 、ヒ素 (As) 、セレン (Se) 、ルヒ゛シ゛ウム (Rb) 、モリフ゛ デ ン (Mo) 、アンチモン (Sb) 、セシウム (Cs) 、ハ゛リウム (Ba) 、ランタン (La) 、セリウム (Ce) 、サマリウム (Sm) 、ハフニウム (Hf) 、タンケ゛ステン (W) 、タンタル (Ta) 、鉛 (Pb) 及びカト゛ミウム (Cd) ※微小粒子状物質 (PM2.5) の成分分析ガイドライン (平成 23 年 7 月,環境省) の実施推奨項目のうち、ケイ素 (Si)

d 炭素成分(3項目)

及びトリウム(Th)は分析していない。

有機炭素(OC)、元素状炭素(EC)、水溶性有機炭素(WSOC)

なお、テフロンろ紙はPM_{2.5} 質量濃度及び無機元素成分、石英繊維ろ紙はイオン成分及び 炭素成分の分析に使用した。

④ 大阪府域の測定地点および試料捕集期間

政令市実施分も含めた大阪府域の測定地点は、表 1-3 に示すとおり、一般環境大気測定局 7 地点、 自動車排出ガス測定局 4 地点の 11 地点であった。測定地点の位置を図 1-2 に示す。

表 1-3 大阪府域の測定地点試および試料捕集期間

所管	区分	No	測定地点	略称		試料捕	集期間	
	一般	1	泉大津市役所	泉大津				
大阪府	一拉	2	大東市役所	大東				
	自排	3	外環河内長野	河内長野(自排)				
大阪市	一般 4 聖賢小学校 2		大阪市	平成25年 5月8日(水) ~ 5月 22日(水)			1	
八队门	自排	自排 5 出来島小学校		大阪市(自排)		平成25年 7月24日(水) ~ 8月 7日(水)	平成25年10月 23日(水) ~11月6日(水)	平成26年 1月 22日(水) ~ 2月 5日(水)
堺市	一般	6	三宝	堺				
豊中市	一般	7	千成	豊中				
吹田市			吹田	平成25年 5月8日(水) ~ 5月 23日(水)				
吹曲巾			吹田(自排)	(9日(木)除く)				
東大阪市	自排	10	東大阪市環境衛生検査センター	東大阪(自排)	平成25年 5月7日(火) ~ 5月 21日(火)	平成25年 7月22日(月) ~ 8月 5日(月)	平成25年10月 21日(月) ~11月4日(月)	平成26年 1月 20日(月) ~ 2月3日(月)
八尾市	一般	11	八尾保健所	八尾	平成25年 5月8日(水) ~ 5月 22日(水)	平成25年 7月24日(水) ~ 8月 7日(水)	平成25年10月 23日(水) ~11月6日(水)	平成26年 1月 22日(水) ~ 2月 5日(水)

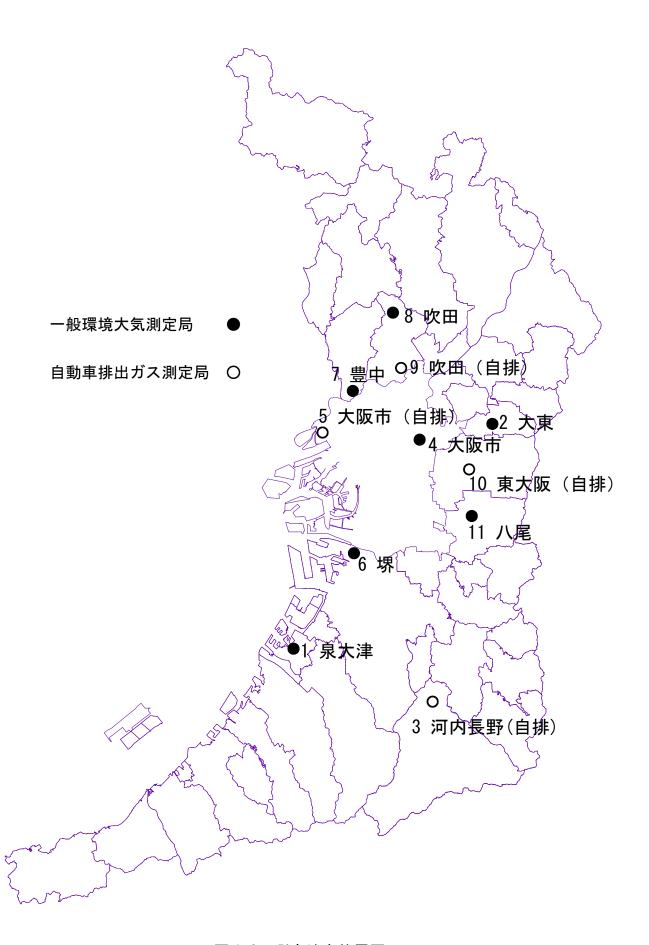


図 1-2 測定地点位置図

2. 試料捕集方法および分析方法

(1) 試料捕集方法

米国の標準測定法(FRM)に準拠した $PM_{2.5}$ ロウボリウムエアサンプラを 1 地点につき 2 台設置して、各季節 14 回、毎分 16. 7L の流量で大気を 23 時間(10 時から翌日 9 時)連続吸引し、テフロンろ紙及び石英繊維ろ紙上に $PM_{2.5}$ を捕集した。なお、泉大津及び大東では、23 時間の捕集後にろ紙を自動で交換する機能を備えた装置を、河内長野では、ろ紙を手動で交換する装置を使用した。

なお、試料捕集前のろ紙は、試料捕集までの間、気温 21.5±1.5℃の恒温室で保管し、試料捕集後のろ紙は、分析に供するまでの間、-4℃以下の冷凍庫で保管した。

図 2-1 に試料捕集状況(自動測定機との位置関係)を、表 2-1 に試料捕集装置及びろ紙の仕様を示す。

泉大津市役所

自動測定機の吸引口高さ 27.5m (地上から) 自動測定機と試料捕集装置の吸引口高さの差 1.1 m

大東市役所

自動測定機の吸引口高さ 18.5m (地上から) 自動測定機と試料捕集装置の吸引口高さの差 1.1 m

外環河内長野

自動測定機の吸引口高さ 5.0m (地上から) 自動測定機と試料捕集装置の吸引口高さの差 1.1m

図 2-1 試料捕集状況(自動測定機との位置関係)

表 2-1 (1) 試料捕集装置の仕様

項目	内 容						
	サーモフィッシャーサイエンティフィック社製						
機種	PM _{2.5} シーケンシャルエアーサンプラー Model2025plus(泉大津・大東)						
	PM _{2.5} ローボリウムエアーサンプラー FRM2000 (河内長野)						
分粒特性	10μmを50%カット後2.5μmを50%カット						
吸引流量	16. 7L/min 流量制御機能付						
使用フィルタサイズ	ϕ 47mm						
外気温・気圧・フィルタ部温度	測定および記録機能付						
フィルタ温度制御機能	フィルタ部温度上昇抑制用換気機能付						
周囲温度	-40~50℃ (-20℃以下は保温が必要)						
電源	Model2025plus: AC120V、3A(昇圧トランス使用)						
电 <i>版</i>	FRM2000: AC120V、2.2A(昇圧トランス使用)						
本体サイズ	Model2025plus:約 W640×D402×H673mm(突起部分を除く)約 46kg						
本体リイス	FRM2000:約 W410×D330×H610mm(突起部分を除く)約 32kg						

表 2-1 (2) ろ紙の仕様

	メーカ	WHATMAN 社製 7592-104			
	ろ紙の材質	PTFE			
	ろ紙の厚さ	$40\pm10\mu\mathrm{m}$			
	ろ紙の直径	46. 2±0. 25mm			
二 フロン 2 純	ろ紙の孔径	最大 2 µ m			
トラフロンろ紙 ト	サポートリングの材質	ポリプロピレン			
	サポートリングの総厚	0. 365±0. 055mm			
	サポートリングの幅	3. 68±0. 51mm			
	粒子保持能 (0.3μm)	最小 99. 7%			
	圧損 (0.3μm) @16. 7L/min	最大 30cmH ₂ 0			
	メーカ	PALLFLEX 社製 Model 2500QAT-UP			
	ろ紙の材質	純石英			
一 英	ろ紙の厚さ	432 μ m			
石英繊維ろ紙 	ろ紙の直径	48mm			
	ろ紙の重量(標準値)	5. 8mg/cm ²			
	粒子保持能 (0.3μm)	99. 9%			

(2) 分析方法

① PM_{2.5}質量濃度

テフロンろ紙を気温 21.5±1.5°C、相対湿度 35±5%の条件下で恒量とし、試料の捕集前後に電子天秤(メトラー・トレド社製 XP26)で $1\mu g$ の単位まで秤量を行った。試料捕集前後の重量差と採気量より大気中の $PM_{2.5}$ 質量濃度($\mu g/m^3$)を算出した。なお、濃度表示は小数点以下第 2 位を四捨五入し小数第 1 位の値までとした。

ろ紙は、試料捕集前は 21.5±1.5℃の恒温室内で、試料捕集後は-4℃以下の冷凍庫内で保管した。

② イオン成分

イオン成分は、イオンクロマトグラフ法で定量した。

試料捕集した石英繊維ろ紙から炭素成分分析用に直径 8mm のポンチで 3 枚くり抜いた残りのろ紙をポリプロピレン製の容器に入れ、超純水 30mL を加え、20 分間超音波抽出を行った。

容器内の溶液をディスポーザブルフィルター(ミリポア社製 Millex-LG、孔径 $0.2\,\mu$ m)でろ過後、ろ液をイオンクロマトグラフ(ダイオネクス社製 ICS-2000(陰イオン)、ICS-1500(陽イオン))法による測定に供した。測定条件を表 2-2 に示す。

ろ紙の有効捕集面積を 11.86cm² として、測定結果と採気量よりイオン成分の大気中濃度 (μ g/m³) を算出した。なお、濃度表示は四捨五入により有効数字 2 桁とした。(以下の項目も同じ)

表 2-2(1) イオンクロマトグラフ法による陰イオン成分の測定条件

分離カラム	IonPac AS18
ガードカラム	IonPac AG18
溶離液	30mM 水酸化カリウム溶液
オートサプレッサー	ASRS-300 4mm
流量	1.0 mL/min
サンプル量	25 μ L
検出器	電気伝導度検出器

表 2-2 (2) イオンクロマトグラフ法による陽イオン成分の測定条件

分離カラム	IonPac CS16
ガードカラム	IonPac CG16
溶離液	30mM メタンスルホン酸水溶液
オートサプレッサー	CSRS-300 4mm
流量	1.0 mL/min
サンプル量	25 μ L
検出器	電気伝導度検出器

③ 無機元素

無機元素は、マイクロウェーブ分解装置(マイルストーンゼネラル社製 ETHOS1)を用いて前処理を行い、誘導結合プラズマ質量分析法(ICP-MS 法)で定量した。

試料捕集したテフロンろ紙のサポートリング部をカット後、ろ紙の全量を専用の分解容器に入れ、フッ化水素酸 2mL、硝酸 5mL 及び過酸化水素水 (30%) 1mL を加え、密栓して、マイクロウェーブ分解装置で約 55 分間分解処理を行った。

冷却後、容器を開け、内容物、ふた等を温水で洗浄しながら、テフロンビーカーに移し入れた。 ビーカ内の溶液をホットプレート上で乾固寸前まで加熱した後、硝酸(5+95)で残渣を溶解洗浄した後、ポリメチルペンテン(PMP)製の全量フラスコで10mL定容としたものをICP-MS法による測定に供した。ICP-MS法による無機元素の測定条件を表2-3に示す。

測定結果と採気量より無機元素の大気中濃度(ng/m³)を算出した。

表 2-3 ICP-MS 法による無機元素の測定条件

機種	Agilent Technologies 社製 7500ce
RF周波数	27. 12 MHz
RF出力	1.2 kW
キャリアーAr ガス流量	1.0 L/min
プラズマ Ar ガス流量	15 L/min
サンプリング深さ	8.0 mm
測定元素 (質量数)	Na (23), Al (27), K (39), Ca (43), Sc (45),
	Ti (47), V (51), Cr (53), Mn (55), Fe (56),
	Co (59)、Ni (60)、Cu (63)、Zn (66)、As (75)、
	Se (82), Rb (85), Mo (95), Cd (111), Sb (121),
	Cs (133), Ba (137), La (139), Ce (140), Sm (147),
	Hf (174)、Ta (181)、W (182)及びPb (208)
内標準元素 (質量数)	Li(7), In(115)

④ 炭素成分

a 有機炭素(OC) 及び元素状炭素(EC)

有機炭素及び元素状炭素は、熱分離光学補正法で定量した。

試料捕集した石英繊維ろ紙を直径 8mm のポンチでくり抜き、熱分離光学補正法(DRI 社製 Carbon Analyzer) による測定に供した。

IMPROVE プロトコルにより段階的に昇温を行い、550°CまではHe ガス雰囲気下で有機炭素(001、002、003、004)を、550°CからはHe/ 0_2 (2%)ガス雰囲気下で元素状炭素(EC1、EC2、EC3)をメタンに変換し、水素炎イオン化検出器(FID)により検出した。

また、He ガス雰囲気下では、加熱による有機物の炭化が起こるため、有機炭素の補正を行った。 サンプルに対して垂直に He-Ne レーザーを照射して反射光を観測し、 550° Cで He/ 0_2 (2%) ガスを 導入してから分析開始時と同じ反射光強度に戻るまでの間に検出された炭素成分を有機炭素の 炭化物とした(熱分解有機炭素(0Cpyro))。測定条件を表 2-4 に示す。

ろ紙の有効捕集面積を 11.86cm 2 として、測定結果と採気量より大気中濃度(μ g/m 3)を算出した。

00、EC は各フラクション値から次式で計算される。なお、各フラクション値が検出下限値未満の場合は、フラクション値をゼロとして 00、EC の濃度を算出した。

OC= OC1+OC2+OC3+OC4+ OCpyro, EC= EC1+EC2+EC3- OCpyro

表 2-4 有機炭素及び元素状炭素の測定条件

試料分析炉		OC	EC								
	温度(°C)	120, 250, 450, 550	550, 700, 800								
	雰囲気	Не	He (98%), 02 (2%)								
流速	He-1 : 40mL,	/min									
	He-2 : 10mL,	/min									
	He-3 : 50mL,	He-3 : 50mL/min									
	10%0 ₂ /He : 1	10%O ₂ /He: 10mL/min									
	Air: 350mL,	/min									
	H ₂ : 35mL/mi	n									
	5%CH ₄ /He : 2	2-5mL/min									
触媒	酸化炉 (90	0°C) : Mn0 ₂									
	メタン化炉	(420°C) : Ni (NO ₃) ₂ ·6H	1 ₂ 0								
検出器	水素炎イオ	ン化検出器(105℃)									

b 水溶性有機炭素(WSOC)

水溶性有機炭素は、燃焼酸化-赤外線式 TOC 分析法で定量した。なお、水溶性有機炭素の分析方法は、大気中微小粒子状物質 (PM_{2.5}) 成分測定マニュアルで定められていないため、関東地方大気環境対策推進連絡会浮遊粒子状物質調査会議^{*}と同様の方法で実施した。

イオン成分分析用に抽出操作を行った(2.②)ろ液の残りを燃焼酸化ー赤外線式 TOC 分析(島津製作所製 TOC-L)法により、抽出液中の全炭素および無機炭素を測定し、全炭素量から無機炭素量を差し引いたものを有機炭素量とした。TOC 計の燃料炉温度は 680℃、キャリアーガスは高純度空気である。

ろ紙の有効捕集面積を 11.86cm² として、測定結果と採気量より水溶性有機炭素の大気中濃度 ($\mu g/m^3$) を算出した。

※:関東甲信静の1都9県7市が協同でPM2.5等に関する広域的な調査を実施

⑤ 検出下限値及び定量下限値

a 装置検出下限、装置定量下限

条件設定等により最適化した分析装置において、十分に低い濃度まで測定できることを確認するために行うものである。

検量線作成時の最低濃度(装置定量下限付近)の標準溶液について、所定の操作により測定を 行い、得られた測定値を濃度の算出式により大気濃度に換算する。5回以上測定して、その標準 偏差(si)を算出し、その3倍を装置検出下限、10倍を装置定量下限とする。

装置検出下限 = $3 \text{ si} \left(\mu \text{ g/m}^3 \right)$

装置定量下限 = $10 \text{ si} \left(\mu \text{ g/m}^3 \right)$

b 方法検出下限、方法定量下限

フィルタや試薬に由来するブランクや前処理操作中の汚染等による分析操作上の工程に起因するものである。

操作ブランク値がある場合には、5 試料以上の操作ブランク試料について所定の操作により測定を行い、得られた測定値を濃度の算出式により大気濃度に換算する。その標準偏差 (sm) を算出し、その3倍を方法検出下限、10倍を方法定量下限とする。

方法検出下限 = $3 \text{ sm} \left(\text{ng/m}^3 \right)$

方法定量下限 = 10 sm (ng/m³)

aおよびbで得られた下限値をそれぞれ比較し、大きい方を検出下限値、定量下限値とする。

なお、測定結果が検出下限値未満である場合は、炭素成分の各フラクション値はゼロ、その他は、検出下限値の 1/2 の値を用いた。

3. 調査結果

(1) 気象概況

試料捕集期間中の天気図を図 3-1 に、気象状況を表 3-1 に、気温データを図 3-2 に示す。また、政令市の測定地点を含む一般局 7 地点 (1.(2) ④参照) の風速データを図 3-3 に示す。

【春季 (平成 25 年 5 月 8 日~5 月 22 日)】

高気圧に覆われて晴れた日が多く、気温(平均、最高、最低)は平年*より高い日が多かった。 試料捕集期間中における平均気温の期間平均値は 20.2° Cで、平年(5月平均: 19.7° C)より高かった。最高気温が 29.4° Cと期間最大となった 5月 14日は西日本~東北にかけて真夏日となった地点が多かった。平均気温の期間最大値は 23.9° C (21日)であった。

降雨は、気圧の谷の通過により 10~11 日および 19 日にみられた。積算日射量の期間平均値は 19.61 MJ/m²で、夏季 (17.33 MJ/m²) よりも多かった。

風速は、 $15\sim16$ 日にかけては他の日に比べて強く、16 日は大阪市を除く 6 地点で平均風速が 2.3 m/s (吹田) ~4.2 m/s (大東) と最大となった。一方、11 日は平均風速が 0.3 m/s (吹田) ~1.4 m/s (泉大津) と最小となった。また、平均風速の期間平均値は、1.2 m/s (吹田) ~2.3 m/s (泉大津) であった。

※:大阪管区気象台における平年値(月ごとの値)。以下、同じ。

【夏季 (平成 25 年 7 月 24 日~8 月 7 日)】

期間の前半は湿った空気や上空の寒気の影響を受けやすく大気の状態が不安定となることがあった。後半は太平洋高気圧に覆われて晴れの日が続いた。

試料捕集期間中における平均気温の期間平均値は 29.4°Cで、平年(7月平均: 27.4°C、8月平均: 28.8°C)より高かった。期間最大値は、最高気温が 34.6°C (7月 25日・8月 5日)、平均気温が 30.8°C (7月 25日) であった。

降雨は、湿った空気の流入により 7 月 29 日および 8 月 6 日にみられた。積算日射量の期間平均 値は 17.33MJ/m²であった。

風速は、期間を通して大きな変化はなく、平均風速の期間平均値は、1.1 m/s(豊中) ~2.4 m/s (大阪市)であった。

【秋季(平成25年10月23日~11月6日)】

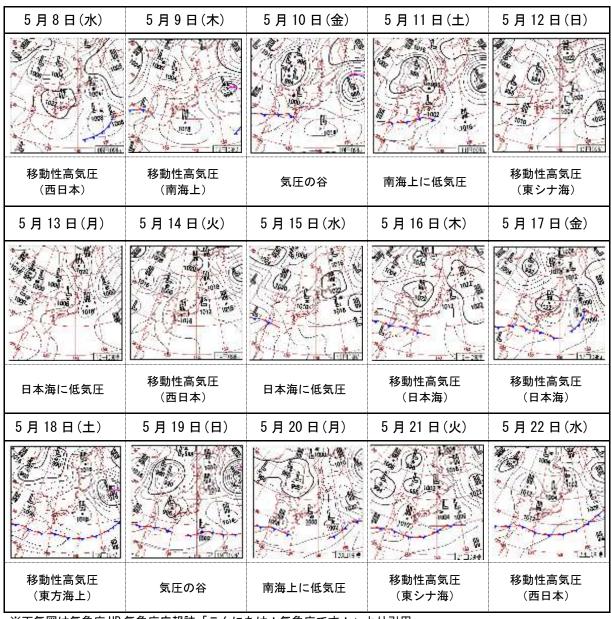
期間の始めの 10 月 23~25 日にかけては前線や台風 27 号からの湿った空気の影響で大雨となった。その後は、高気圧に覆われる日が多かった。4 日は、気圧の谷の通過後、冬型の気圧配置となり、木枯らし 1 号が吹いた。

試料捕集期間中における平均気温は、10 月 23~31 日の平均値が 17.3℃で、平年(10 月平均: 19.0℃)より低く、11 月 1~5 日の平均値が 16.1℃で、平年(11 月平均: 13.6℃)より高かった。10 月 24 日は台風付近の暖かく湿った空気の影響で最高気温(24.8℃)、平均気温(20.8℃)ともに期間最大となった。

降雨は、 $23\sim25$ 日および $3\sim4$ 日にみられた。積算日射量の期間平均値は 7.81MJ/m^2 で、四季を通して最も少なかった。

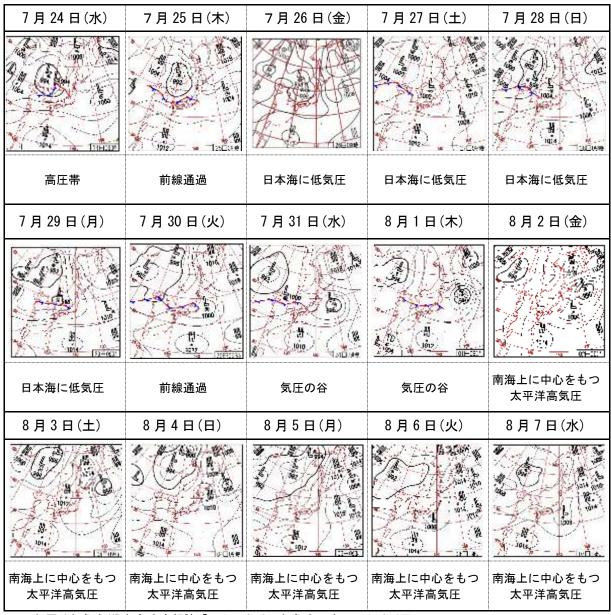
風速は、台風の影響により23~25日にかけて他の日に比べて強い傾向があった。11月2~3日は、

他の日に比べて風速が弱く、3 日の大東を除いて平均風速は 1.5 m/s 以下であった。また、平均風速の期間平均値は、1.1 m/s(吹田) ~ 2.4 m/s(大東)であった。


【冬季(平成26年1月22日~2月5日】

高気圧に覆われ、南からの暖かい空気の影響を受ける日が多く、気温(平均、最高、最低)は平年*より高い日が多かった。気圧の谷の通過後、2月4~5日は冬型の気圧配置となった。

試料捕集期間中における平均気温の平均値は 7.7° Cで、平年 $(1 月平均: 6.0^{\circ}$ C、 $2 月平均: 6.3^{\circ}$ C)より高かった。平均気温が 11.4° Cと期間最大となった $1 月 25 日は暖気が入り全国的に気温が上昇し、最高気温が <math>4 月並となった地点もあった。最高気温の期間最大値は <math>16.1^{\circ}$ C($2 月 2 日 \cdot 3 日$)であった。


降雨は、1月25日、29~30日、2月1日および3日にみられた。積算日射量の期間平均値は8.84MJ/m²であった。

風速は、1月26日は他の日に比べて強く、豊中を除く6地点で平均風速が2.6 m/s (吹田) $\sim 4.4 \text{ m/s}$ (大東) と最大となった。1月27日と2月2日は全ての地点で平均風速が1.5 m/s 以下と弱かった。また、平均風速の期間平均値は、1.1 m/s (吹田) $\sim 2.2 \text{ m/s}$ (泉大津)であった。

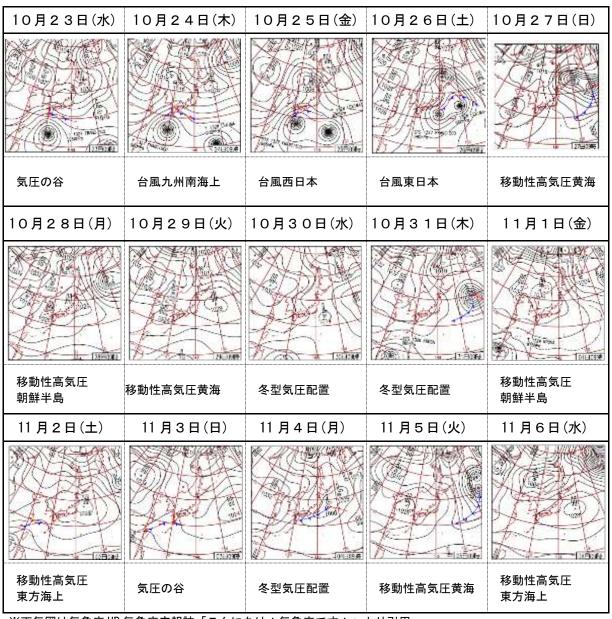

※天気図は気象庁 HP 気象庁広報誌「こんにちは!気象庁です!」より引用。

図 3-1 (1) 試料捕集期間中の天気図 (春季)

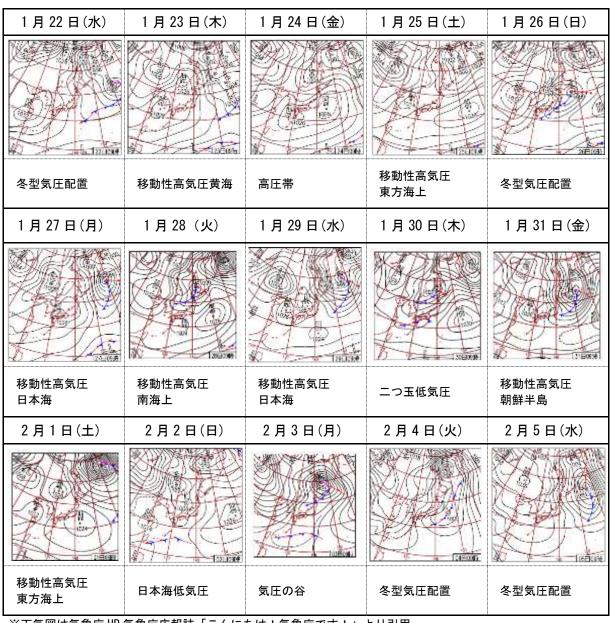

※天気図は気象庁 HP 気象庁広報誌「こんにちは!気象庁です!」より引用。

図 3-1 (2) 試料捕集期間中の天気図(夏季)

※天気図は気象庁 HP 気象庁広報誌「こんにちは!気象庁です!」より引用。

図 3-1 (3) 試料捕集期間中の天気図(秋季)

※天気図は気象庁 HP 気象庁広報誌「こんにちは!気象庁です!」より引用。

図 3-1 (4) 試料捕集期間中の天気図(冬季)

表 3-1 試料捕集期間中の気象状況 (大阪管区気象台)

H25年度 春季		気温(℃)		湿度(%)	降水量	(mm)	積算日射量
口20年及 谷字	平均	最高	最低	业及(%)	積算	最大時量	(MJ/m³)
5月8日(水)	16.8	19.6	11.9	42	0	0	25.14
5月9日(木)	20.5	26.3	15.6	42	0	0	20.22
5月10日(金)	17.6	22.5	15.7	82	20	4	5.08
5月11日(土)	16.8	19.0	13.6	87	8.5	4	6.86
5月12日(日)	20.9	25.2	16.0	51	0	0	25.35
5月13日(月)	22.0	28.3	17.3	56	0	0	24.97
5月14日(火)	22.9	29.4	19.0	62	0	0	23.89
5月15日(水)	21,4	25.4	18,2	60	0	0	22.36
5月16日(木)	18.0	22.9	14.8	56	0	0	21.31
5月17日(金)	20.5	26.1	16.6	55	0	0	25.04
5月18日(土)	21.0	25.6	17.1	53	0	0	22.91
5月19日(日)	18.5	23.5	17.3	82	10.5	4	6.98
5月20日(月)	22.6	26.4	19.2	65	0	0	20.62
5月21日(火)	23.9	27.8	20.3	62	0	0	23.82
期間平均値	20.2			61	39		19.61

1105年本 百千		気温(℃)		况序(0/)	降水量	(mm)	積算日射量 <u>(MJ/㎡)</u> 18.74
H25年度 夏季	平均	最高	最低	湿度(%)	積算	最大時量	_
7月24日(水)	29.3	32.6	26.8	65	0	0	18.74
7月25日(木)	30.8	34.6	27.5	61	0	0	20.98
7月26日(金)	29.9	33.6	26.9	67	0	0	19.48
7月27日 (土)	29,5	32.0	27.1	62	0	0	16.49
7月28日(日)	28.1	32.1	26.1	70	0	0	12.01
7月29日(月)	28.2	31.1	27.4	76	1.5	0.5	6.77
7月30日(火)	28.7	32.7	26.2	73	0	0	18.03
7月31日(水)	30.1	33,8	27.9	70	0	0	16.16
8月1日(木)	29.6	32.7	27.0	67	0	0	15.89
8月2日 (金)	28.6	33.2	25.1	59	0	0	20.82
8月3日 (土)	28.9	32.2	26.2	58	0	0	18.50
8月4日(日)	30.1	34.3	27.9	65	0	0	19.17
8月5日 (月)	29.2	34.6	24.7	73	8	7	21.87
8月6日 (火)	29.9	34.0	27.1	69	6.5	6.5	17.72
期間平均値	29.4			67	16		17.33

H25年度 秋季	気温(℃)			湿度(%)	降水量	積算日射量	
口20年及 伙学	平均	最高	最低	业及(%)	積算	最大時量	(MJ/m²)
10月23日(水)	18.4	19.8	17.6	83	12.5	2.5	3.29
10月24日(木)	20.8	24.8	19.2	79	40.5	11	6.76
10月25日(金)	17.2	18.8	15.4	86	31.5	5.5	2.30
10月26日(土)	15.8	18.9	13.3	57	0	0	7.05
10月27日(日)	15.7	19.7	11.8	54	0	0	11.64
10月28日(月)	17.2	20.0	15.5	56	0	0	11.87
10月29日(火)	16.7	18.6	14.4	78	0	0	4.58
10月30日(水)	17.1	21.0	13.5	61	0	0	12.10
10月31日(木)	16.5	20.9	13.2	63	0	0	9.42
11月1日(金)	15.7	20.8	12.0	60	0	0	11.38
11月2日 (土)	17.9	20.4	16.1	68	0	0	7.06
11月3日(日)	16.9	18.2	16.1	92	15.5	4	2.44
11月4日 (月)	15,4	20,3	12,5	69	2	2	8.07
11月5日(火)	14.6	19.2	10.5	62	0	0	11.38
期間平均値	16.9			69	102		7.81

H25年度 冬季	気温(℃)			湿度(%)	降水量	積算日射量			
口20千茂 冬字	平均	最高	最低	业及(%)	積算	最大時量	(MJ/m²)		
1月22日(水)	3.8	6.7	1.8	58	0	0	8.14		
1月23日(木)	4.7	9.1	0.6	65	0	0	7.93		
1月24日(金)	7.6	11,6	4.2	63	0	0	11.74		
1月25日(土)	11.4	14.8	9.6	70	8	4	7.42		
1月26日(日)	4.5	9.6	2.1	53	0	0	7.57		
1月27日(月)	4.4	7.7	0.6	59	0	0	12.59		
1月28日(火)	8.4	11.1	4.8	65	0	0	10.18		
1月29日(水)	8.1	12.6	5.5	57	4	2	11.69		
1月30日(木)	9.7	11.1	6.5	83	3	1.5	3.46		
1月31日(金)	8.0	13.1	3.9	58	0	0	9.88		
2月1日(土)	11,1	14.2	9.2	67	2	1.5	9.23		
2月2日(日)	12.0	16.1	9.1	85	0	0	8.93		
2月3日(月)	11.1	16.1	6.5	74	1	1	4.80		
2月4日(火)	3.3	7.6	1.3	58	0	0	10.18		
期間平均値	7.7			65	18		8.84		

注 1) 気温の網掛け部分は平年値 (月ごとの値) より高いことを示す。 注 2) 期間平均値欄の降水量は合計値を示す。 注 3) 11 時のデータから翌日 9 時までの 23 時間平均である。

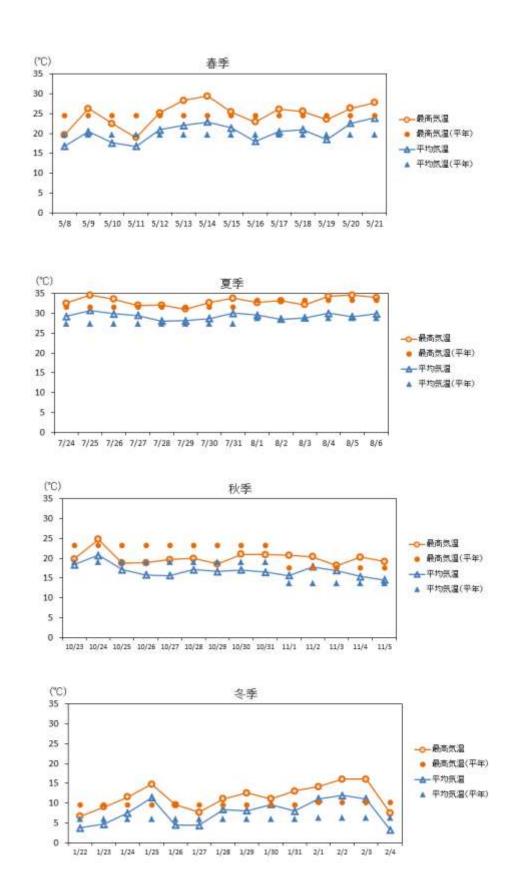


図 3-2 試料捕集期間中の気温データ (大阪管区気象台)

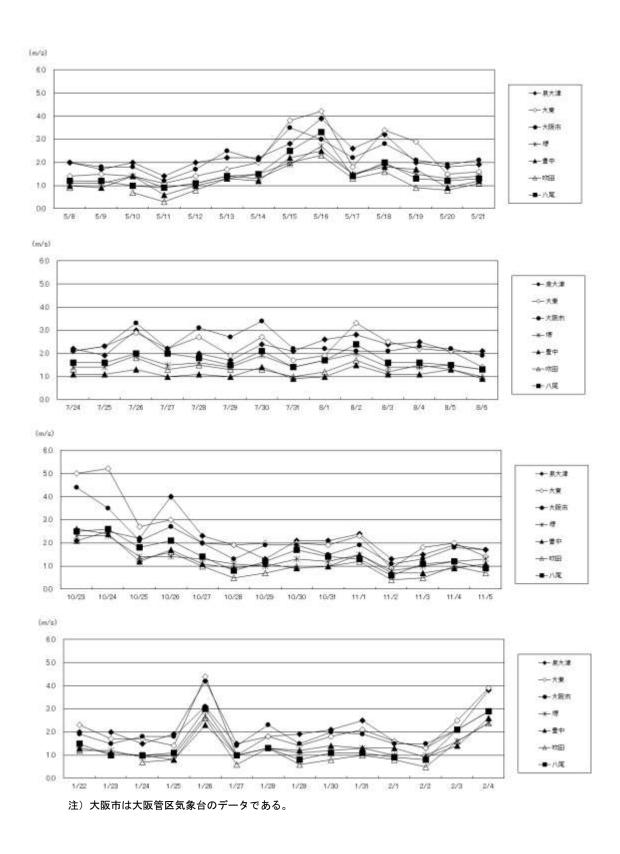
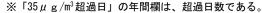


図 3-3 試料捕集期間中の平均風速

- 20 -

(2) PM25質量濃度


① PM_{2.5}質量濃度

PM₂₅質量濃度の季節平均値を表 3-2 および図 3-4 に示す。

- ○夏季の季節平均値は 22.3~24.7 g/m³で、いずれの地点も四季を通じて最も高かった。
- ○泉大津の季節平均値が四季を通じて最も高かった。
- 〇環境基準の年平均値である $15 \mu \text{ g/m}^3$ を超過した日数は、春季 $8 \sim 9$ 日、夏季 11 日、秋季 $8 \sim 9$ 日、冬季 $9 \sim 10$ 日で、夏季が最も多かった。
- 〇環境基準の日平均値である $35 \mu \text{ g/m}^3$ を超過した日数は、7月27日 (最高濃度:泉大津40.6 $\mu \text{ g/m}^3$)、7月31日 (泉大津35.9 $\mu \text{ g/m}^3$)、11月2日 (最高濃度:大東40.8 $\mu \text{ g/m}^3$)、11月3日 (泉大津38.7 $\mu \text{ g/m}^3$)、1月25日 (最高濃度:泉大津39.3 $\mu \text{ g/m}^3$)及び1月30日 (泉大津37.7 $\mu \text{ g/m}^3$)の5日であった。

表 3-2 PM₂₅質量濃度の季節平均値

	地点	PM _{2.5} 質量濃度 (µg/m³)	15µ g/m³ 超過日数	35µ g/m³ 超過日※ ()内は濃度
	泉大津	18.3	9	
春季	大東	16.1	9	
	河内長野	16.9	8	
	泉大津	24.7	11	7月27日(40.6) 7月31日(35.9)
夏季	大東	22.5	11	7月27日(37.7)
	河内長野	22.3	11	7月27日(35.8)
	泉大津	18.9	9	11月3日(38.7)
秋季	大東	17.7	8	11月2日(40.8)
	河内長野	18.2	8	11月2日(35.1)
	泉大津	21.5	10	1月25日(39.3) 1月30日(37.7)
冬季	大東	20.8	10	1月25日(37.7)
	河内長野	19.7	9	-
年間	泉大津	20.9	39	5
	大東	19.3	38	3
	河内長野	19.3	36	2

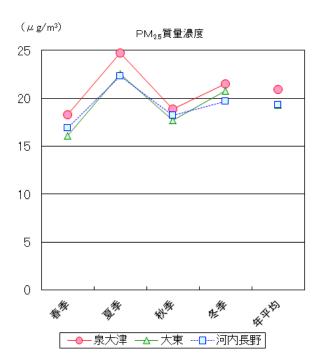


図 3-4 PM₂ 質量濃度の季節平均値

PM25質量濃度の季節別経日変化を図 3-5 に示す。

【春季】

- ・ $PM_{2.5}$ 質量濃度は、5 月 8 日~17 日までは 10.4~ $28.2 \mu g/m^3$ の範囲にあったが、その後、下降した後、上昇し、21 日は泉大津・河内長野で $34.4 \mu g/m^3$ と期間最大値を示した。
- ・泉大津では 5 月 9 日、11 日に大東・河内長野との濃度差が大きかった。9 日は大東との差が 5. $9 \mu g/m³$ で、11 日は河内長野との差が 9. $2 \mu g/m³$ であった。
- ・大東での濃度変動は、5月11日~16日までは、泉大津・河内長野と異なっていた。

【夏季】

- ・PM_{2.5}質量濃度は、7月24日~27日にかけて上昇し、27日に3地点で $35 \mu g/m^3$ を超過し期間最大値を示した後、下降し、31日に再び上昇し、31日は泉大津で $35.9 \mu g/m^3$ と $35 \mu g/m^3$ を超過した。その後、8月1日~6日は7.8~24.4 $\mu g/m^3$ の範囲であった。
- ・他の 2 地点との濃度差が大きかった日は、泉大津では 7 月 24 日、25 日、27 日で、大東・河内 長野より濃度が高かった。期間最大値を示した 27 日は河内長野との濃度差が $4.8 \mu \, \mathrm{g/m}^3$ であった。
- ・河内長野では 7 月 31 日に泉大津・大東より濃度が低く、 $35 \mu g/m^3$ を超過した泉大津との濃度差が $6.9 \mu g/m^3$ であった。大東では 8 月 2 日、3 日に泉大津・河内長野より濃度が低く、濃度差は $4.1\sim5.4 \mu g/m^3$ であった。

【秋季】

- ・ PM_{2.5} 質量濃度は、10 月 26 日から上昇し、大東・河内長野では 11 月 2 日に、泉大津では 11 月 3 日に、35 μ g/m³ を超過し期間最大値を示した後、下降した。
- ・地点間の濃度差が大きかった日は 11 月 1 日~3 日で、11 月 1 日は河内長野と大東との濃度差が 8.4 μ g/m³であった。11 月 2 日は 35 μ g/m³を超過した大東と泉大津との濃度差が 9.1 μ g/m³で、3 日は 35 μ g/m³を超過した泉大津と大東との濃度差が 9.8 μ g/m³であった。

【冬季】

- ・ $PM_{2.5}$ 質量濃度は、1月24~25日に上昇し、泉大津・大東で1月25日に $35 \mu g/m^3$ を超過した。その後、一度、下降し、1月30日に再び泉大津で $35 \mu g/m^3$ を超過した。
- ・期間を通して地点間で濃度に差があり、泉大津で $35 \mu \text{ g/m}^3$ を超過した 1 月 30 日は泉大津と河内長野の濃度差は $7.4 \mu \text{ g/m}^3$ であった。また、2 月 2 日は泉大津・河内長野と大東で濃度変動が異なっていた。

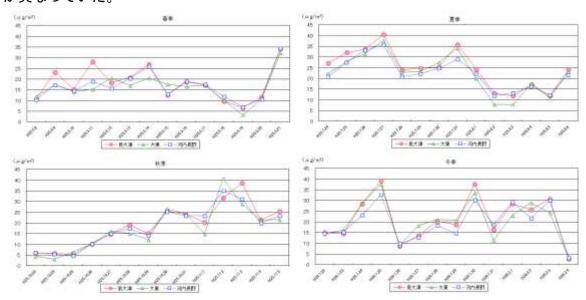


図 3-5 PM25質量濃度の季節別経日変化

② 自動測定機による PM2.5 濃度との相関

 $PM_{2.5}$ 質量濃度と自動測定機で測定した $PM_{2.5}$ 濃度との相関図(季節別)を図 3-6 に、相関図(年間)を図 3-7 に、相関係数を表 3-3 に示す。また、 $PM_{2.5}$ 質量濃度、自動測定機で測定した $PM_{2.5}$ 濃度及びSPM濃度の季節別経日変化を図 3-8 に示す。

季節別の $PM_{2.5}$ 質量濃度と自動測定機で測定した $PM_{2.5}$ 濃度の相関係数は 0.95 以上であった。また、年間の $PM_{2.5}$ 質量濃度と自動測定機で測定した $PM_{2.5}$ 濃度の回帰式の傾きは $0.96\sim1.0$ で、環境省が実施した標準測定法と自動測定機の等価性評価の基準の 1 つである「切片のある回帰式の傾きが 1 ± 0.1 以内であること」を満たしていた。

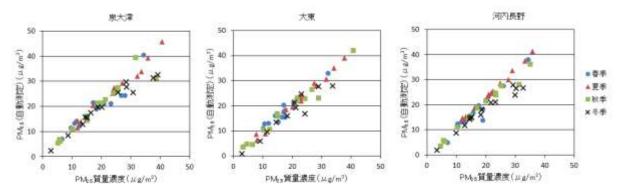


図 3-6 PM_{2.5}質量濃度と自動測定機で測定したPM_{2.5}濃度との相関図(季節別)

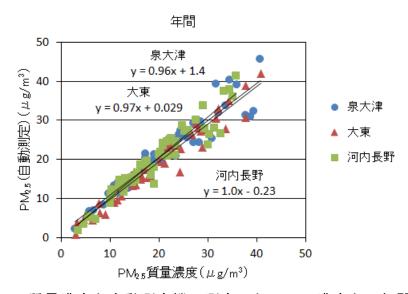


図 3-7 РМ_{2.5}質量濃度と自動測定機で測定したРМ_{2.5}濃度との相関図(年間)

	春季	夏季	秋季	冬季
泉大津	0. 95	0. 99	0. 95	0. 97
大東	0. 98	0. 99	0. 98	0. 96
河内長野	0. 97	1.0	0. 99	0. 98

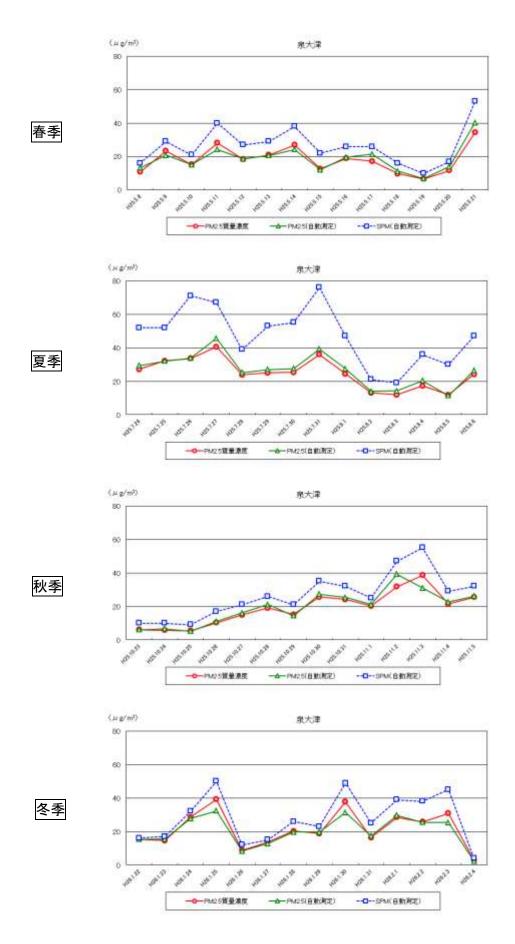


図 3-8 (1) PM_{2.5}質量濃度、PM_{2.5}及びSPM濃度(自動測定)の季節別経日変化

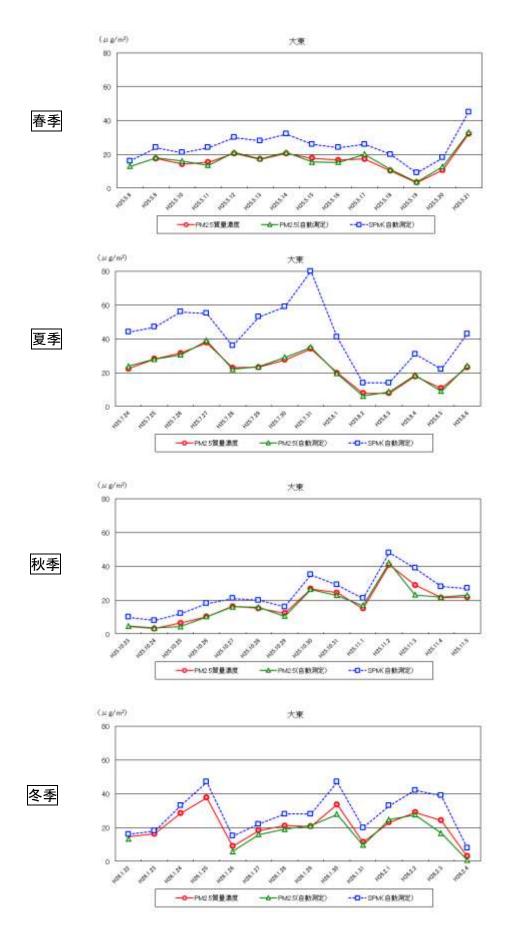
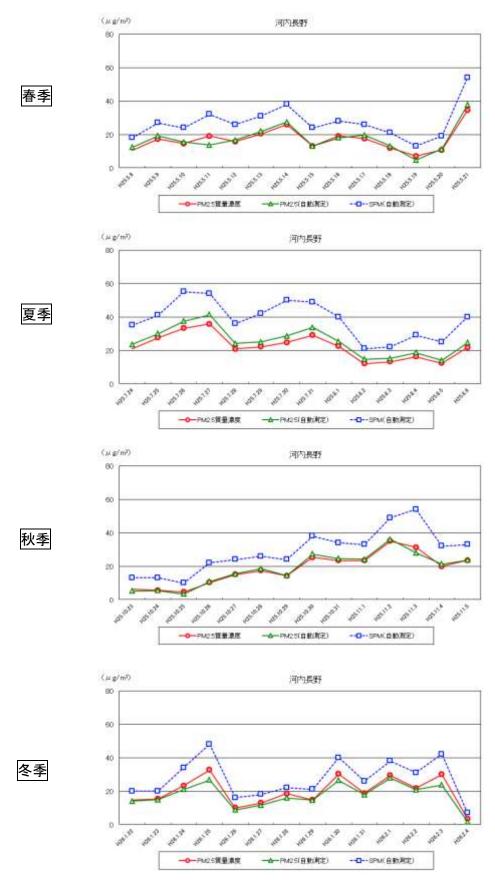
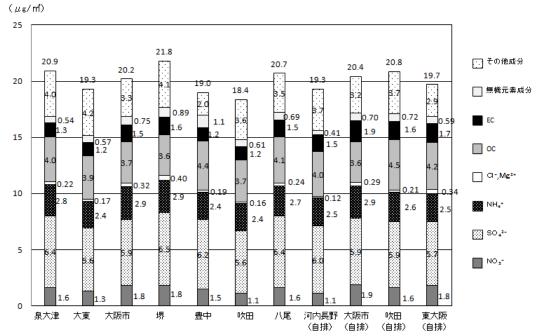


図 3-8 (2) PM_{2.5}質量濃度、PM_{2.5}及びSPM濃度(自動測定)の季節別経日変化




図 3-8 (3) PM_{2.5}質量濃度、PM_{2.5}及びSPM濃度(自動測定)の季節別経日変化

(3) 成分濃度

① 年平均

各地点 56 日間の P M_{2.5} 中の各成分濃度の平均値を図 3-8 に、 P M_{2.5} 質量濃度に占める各成分 濃度の割合の平均値を図 3-9 に示す。

- $OPM_{2.5}$ 質量濃度の年平均値は、堺で $21.8\,\mu\,g/m^3$ と最も大きく、吹田で $18.4\,\mu\,g/m^3$ と最も小さかった。
- $OPM_{2.5}$ に含まれる主な成分は、 NO_3^- 、 SO_4^{2-} 、 NH_4^+ 、OC 及び EC であった。
- $OPM_{2.5}$ 質量濃度に占める割合が最も大きかったのは SO_4^2 濃度で $28\sim33\%$ 、次に大きかったのは SO_4^2 濃度で $17\sim23\%$ であった。
- 〇主な成分濃度は地点によって大きな違いはなかった。

※その他成分には、Si や OC に結合している水素や酸素などを含む (OC は炭素のみの濃度)。 ※棒グラフ上端の値は $PM_{2,5}$ 質量濃度を示す。

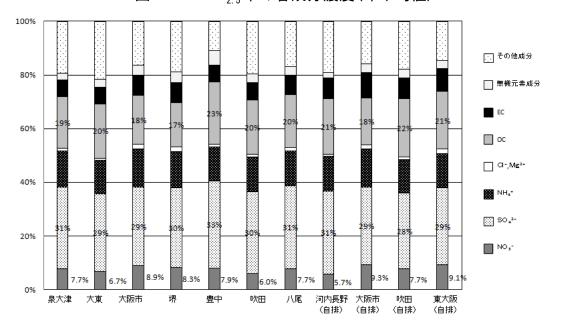


図 3-8 PM₂₅中の各成分濃度(年平均値)

図 3-9 РМ_{2.5}質量濃度に占める各成分濃度の割合(年平均値)

② 季節平均

大阪府域 11 地点で同日に試料採取を行った日(春季:5/8, 10–11, 13–20、夏季:7/24–8/4、秋季:10/23–11/3、冬季:1/22–2/2)の $PM_{2.5}$ 質量濃度の季節平均値を図 3–10 に、 $PM_{2.5}$ 中の主な成分($N0_3$ ⁻、 $S0_4$ ²、00 及び EC)濃度の季節平均値を図 3–11 に示す。

- $OPM_{2.5}$ 質量濃度の季節平均値は、春季・秋季に比べ、夏季・冬季に高かった。地点間の濃度差(最大濃度地点と最小濃度地点の差)は、夏季・秋季が $3.4 \mu \, \text{g/m}^3$ であったのに対し、春季は $6.3 \mu \, \text{g/m}^3$ 、冬季は $5.3 \mu \, \text{g/m}^3$ であった。
- ONO₃ は全地点とも夏季に濃度が低く、冬季に濃度が高かった。冬季は他の季節に比べ地点間の 濃度差が大きく、河内長野(自排)で濃度が低かった。
- 〇SO₄²⁻は全地点とも夏季に濃度が高く、他の季節の平均値の約2倍あった。夏季は他の季節に比べ地点間の濃度差が大きく、泉大津・堺・豊中・八尾で高く、吹田・吹田(自排)で濃度が低かった。
- OOC 及び EC 濃度は季節変動があまりなく、地点によって変動が異なっていた。
- 〇夏季は、0C 濃度が吹田(自排)で、EC 濃度が大阪市(自排)で、他の地点に比べてやや高かった。

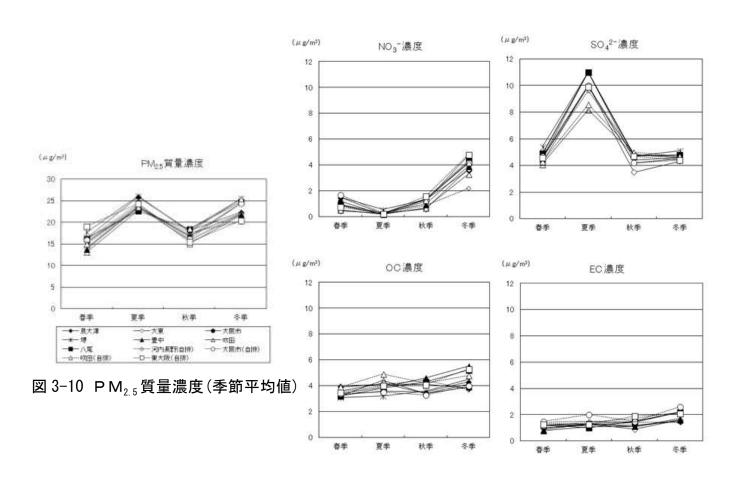


図 3-11 РМ。5 中の主な成分濃度(季節平均値)

※春季:5/8,10-11,13-20、夏季:7/24-8/4、秋季:10/23-11/3、冬季:1/22-2/2

③ 主な成分の日ごとの濃度

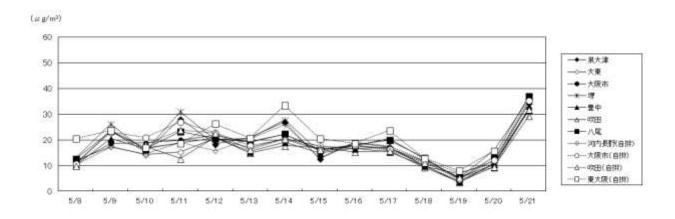
 $PM_{2.5}$ 質量濃度と $PM_{2.5}$ に含まれる主な成分濃度との相関係数を表 3-3 に、 $PM_{2.5}$ 質量濃度および $PM_{2.5}$ に含まれる主な成分濃度の地点間の相関係数を表 3-4 に、季節別の経日変化を図 3-12 に示す。

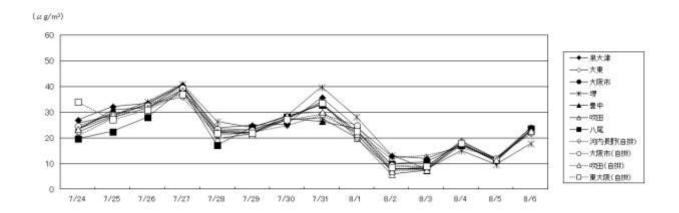
- 〇夏季は $PM_{2.5}$ 質量濃度と SO_4^{2-} 濃度の相関が0.9以上と高く、 SO_4^{2-} 濃度は $PM_{2.5}$ 質量濃度と濃度変動が類似していた。秋季は00 濃度と、冬季は NO_3^{-} 濃度との相関が高かった。一方、春季は主な成分濃度との相関係数が $0.43\sim0.67$ の範囲にあり、他の季節ほど明確に $PM_{2.5}$ 質量濃度と濃度変動が類似している成分がなかった。
- $OPM_{2.5}$ 質量濃度、 NO_3 ⁻濃度および SO_4 ²-濃度の地点間の相関係数は 0.8 以上あり、11 地点での濃度変動が類似していた。特に、 SO_4 ²-濃度は、地点間の相関係数が 0.9 以上と相関が高かった。一方、OC および EC 濃度は、前者に比べて相関係数が小さく、特に、河内長野(自排)は泉大津を除いて相関係数が $0.64\sim0.78$ と小さかった。
- $OPM_{2.5}$ 質量濃度は、季節ごとにみると、春季は、前半($5/8\sim5/15$)と後半($5/16\sim5/21$)で 状況が異なっており、前半は地点間の濃度差が大きく、濃度変動もやや異なっていた。しかし、 後半は濃度も濃度変動も類似していた。夏季と秋季は、低濃度時は地点差が小さいが、 $35\,\mu\,g/m^3$ を超過する高濃度(7/27 除く)時には地点間で濃度差が大きくなる傾向があった。冬季は、濃度が上昇すると地点間での濃度差が大きくなる傾向にあった。11/2 は最も濃度差が大きく、最大値(八尾: $51.3\,\mu\,g/m^3$ (期間最大値))と最小値(泉大津: $31.7\,\mu\,g/m^3$)の差が $19.6\,\mu\,g/m^3$ であった。
- $ON0_3$ -濃度は、平成 23、24 年度の調査結果と同様、濃度が上昇すると地点間での濃度差が大きくなる傾向にあった。また、地点間で $PM_{2.5}$ 質量濃度の濃度差が大きい日に、 $N0_3$ -も濃度差が大きい傾向にあった。特に、河内長野(自排)では、冬季($1/24\sim1/25$ 、 $1/28\sim1/30$ 、2/2)にみられるように、他の 10 地点で濃度が上昇しても濃度上昇がみられない、あるいは、濃度上昇が小さかった。1/25 は最も濃度差が大きく、最大値(大阪市、堺: $14\mu g/m^3$ (期間最大値))と最小値(河内長野(自排): $5.6\mu g/m^3$)の差が $8.4\mu g/m^3$ であった。図 3-13 に示すように、大気汚染物質である $N0_2$ 濃度も、河内長野(自排)では、他の 10 地点で濃度が上昇しても濃度上昇が小さく、濃度が低い傾向にあった。平成 23、24 年度の調査結果でも、島本や富田林で同じ傾向を示しており、 $N0_3$ -は、発生源の少ない地域では濃度が低い傾向にあると考えられる。
- OSO_4^2 -濃度は、秋季の前半($10/23\sim10/29$)と冬季には地点間の濃度差があまりなかった。前述のとおり、地点間の相関係数は 0.9 以上で 11 地点での濃度変動が類似していたが、春季・夏季・秋季の後半($10/30\sim11/5$)は地点間で濃度に差があった。7/31 は最も濃度差が大きく、最大値(堺: $18\mu g/m^3$)と最小値(吹田: $9.1\mu g/m^3$)の差が $8.9\mu g/m^3$ であった。期間最大値は $21\mu g/m^3$ (7/27 豊中・八尾)であった。
- O00 濃度は、地点間で濃度差があった。11/2 は最も濃度差が大きく、最大値(八尾: $13 \mu g/m^3$ (期間最大値))と最小値(吹田: $6.5 \mu g/m^3$) の差が $6.5 \mu g/m^3$ であった。河内長野(自排)では、11/1 や 1/24 のように他の 10 地点と濃度変動が異なる日があり、相関係数が他の地点に比べて小さい原因の一つであると考えられる。
- 〇EC 濃度は、主な成分の中で最も濃度が低かった。冬季は他の季節に比べて濃度変動が明確にみられたが、四季を通じて濃度変動が小さく、期間最大値は $4.1 \mu \, \text{g/m}^3$ ($11/2 \, \text{東大阪}$ (自排)、 $1/30 \, \text{大阪市}$ (自排)・吹田(自排))であった。自排局で他の地点に比べてやや濃度が高くなる日が

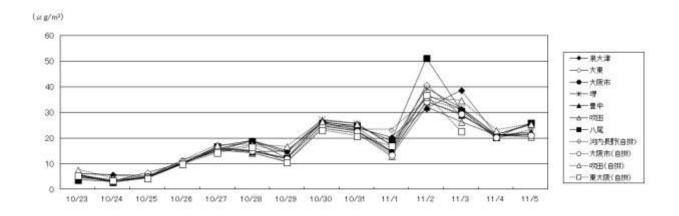
多く、夏季 $(8/3 \, \text{以外})$ および冬季 $(1/25, 2/1 \, \text{以外})$ は大阪市 (自排) で、秋季 $(10/25, 10/27 \sim 11/2)$ は東大阪 (自排) で日最大濃度を示した。

表 3-3 PM_{2.5}質量濃度とPM_{2.5}に含まれる主な成分濃度との相関係数

	春季	夏季	秋季	冬季
NO ₃	0.55	0.36	0.70	0.91
SO_4^{2-}	0.67	0.95	0.86	0.82
OC	0.43	0.69	0.90	0.77
EC	0.61	0.67	0.86	0.87


※春季 n=121、1%有意水準 0.239


※夏季・秋季・冬季 n=132、1%有意水準 0.229


表 3-4 $PM_{2.5}$ 質量濃度及び $PM_{2.5}$ に含まれる主な成分濃度の地点間の相関係数

PM _{2.5}	泉大津	大東	大阪市	堺	豊中	吹田	八尾	河内長野 (自排)	大阪市 (自排)	吹田 (自排)	東大阪(自排)
泉大津	1.00										
大東	0.92	1.00	4.00								
大阪市 堺	0.93 0.96	0.98 0.94	1.00 0.96	1.00							
豊中	0.96	0.94	0.96	0.95	1.00						
吹田	0.92	0.97	0.96	0.93	0.98	1.00					
八尾	0.89	0.95	0.95	0.94	0.93	0.91	1.00				
河内長野(自排)	0.96	0.92	0.91	0.92	0.91	0.89	0.90	1.00			
大阪市(自排)	0.92	0.95	0.98	0.96	0.98	0.96	0.93	0.88	1.00		
吹田(自排)	0.93	0.96	0.98	0.95	0.97	0.96	0.93	0.89	0.98	1.00	
東大阪(自排)	0.86	0.91	0.89	0.90	0.89	0.89	0.87	0.85	0.88	0.85	1.00
NO ₃	泉大津	大東	大阪市	堺	豊中	吹田	八尾	河内長野 (自排)	大阪市 (自排)	吹田 (自排)	東大阪(自排)
泉大津	1.00										
大東	0.87	1.00	1.00								
大阪市 堺	0.92	0.96	1.00	1.00							
娇 豊中	0.97	0.90	0.95	1.00	1.00						
豊中 吹田	0.88 0.84	0.95 0.96	0.98 0.95	0.92 0.87	1.00 0.97	1.00					
八尾	0.84	0.96	0.95	0.87	0.97	0.94	1.00				
八尾 河内長野(自排)	0.93	0.93	0.93	0.92	0.94	0.94	0.91	1.00			
大阪市(自排)	0.90	0.89	0.96	0.92	0.97	0.02	0.94	0.88	1.00		
吹田(自排)	0.93	0.94	0.97	0.94	0.97	0.94	0.95	0.89	0.94	1.00	
東大阪(自排)	0.91	0.96	0.97	0.92	0.96	0.95	0.98	0.88	0.93	0.97	1.00
SO ₄ ²⁻	泉大津	大東	大阪市	堺	豊中	吹田	八尾	河内長野 (自排)	大阪市 (自排)	吹田 (自排)	東大阪(自排)
泉大津	1.00										
大東	0.94	1.00									
大阪市	0.97	0.98	1.00								
堺	0.97	0.96	0.98	1.00	1.00						
豊中	0.96	0.96	0.98	0.95	1.00	1.00					
吹田 八尾	0.92 0.96	0.92 0.97	0.94	0.91 0.97	0.94	1.00	1.00				
八尾 河内長野(自排)	0.98	0.97	0.98 0.97	0.97	0.96 0.95	0.93 0.93	0.96	1.00			
大阪市(自排)	0.98	0.94	0.98	0.96	0.99	0.95	0.96	0.96	1.00		
吹田(自排)	0.94	0.93	0.96	0.93	0.96	0.97	0.95	0.95	0.95	1.00	
東大阪(自排)	0.95	0.97	0.98	0.97	0.96	0.93	0.97	0.94	0.96	0.95	1.00
OC	泉大津	大東	大阪市	堺	豊中	吹田	八尾	河内長野 (自排)	大阪市 (自排)	吹田 (自排)	東大阪(自排)
泉大津	1.00							(1)//	(1)//	(1)//	(1))//
大東	0.85	1.00									
大阪市	0.86	0.93	1.00								
堺	0.85	0.86	0.94	1.00							
豊中	0.77	0.81	0.91	0.95	1.00						
吹田	0.82	0.89	0.88	0.79	0.78	1.00					
八尾	0.81	0.87	0.92	0.94	0.89	0.77	1.00	1 00			
河内長野(自排)	0.93	0.78	0.78	0.75	0.67	0.71	0.74	1.00	1.00		
大阪市(自排)	0.85	0.89	0.93	0.91	0.88	0.87	0.89	0.75	1.00	1.00	
吹田(自排) <u>東大阪(自排)</u>	0.86 0.83	0.85 0.91	0.91 0.96	0.85 0.97	0.84 0.94	0.93 0.83	0.80 0.97	0.71 0.74	0.87 0.92	1.00 0.85	1.00
EC	泉大津	大東	大阪市	堺	豊中	吹田	八尾	河内長野 (自排)	大阪市 (自排)	吹田 (自排)	東大阪(自排)
 泉大津	1.00							(II THE	(日7)		(II TAF /
大東	0.85	1.00									
大阪市	0.85	0.87	1.00								
堺	0.88	0.86	0.95	1.00							
豊中	0.80	0.87	0.96	0.92	1.00						
吹田	0.86	0.93	0.94	0.91	0.95	1.00					
=	0.84	0.80	0.94	0.93	0.90	0.86	1.00				
八尾											
河内長野(自排)	0.88	0.77	0.68	0.70	0.64	0.73	0.69	1.00			
河内長野(自排) 大阪市(自排)	0.82	0.94	0.90	0.88	0.92	0.93	0.83	0.70	1.00		
河内長野(自排)									1.00 0.85 0.77	1.00 0.89	1.00

※n=47(春季: 5/8, 10-11, 13-20、夏季: 7/24-8/4、秋季: 10/23-11/3、冬季: 1/22-2/2)、1%有意水準 0.372

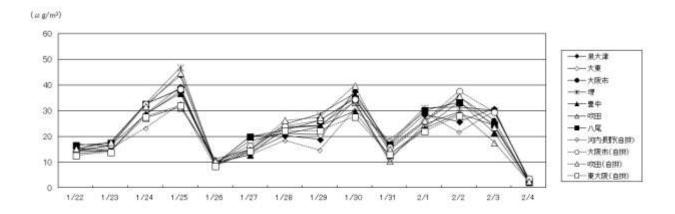
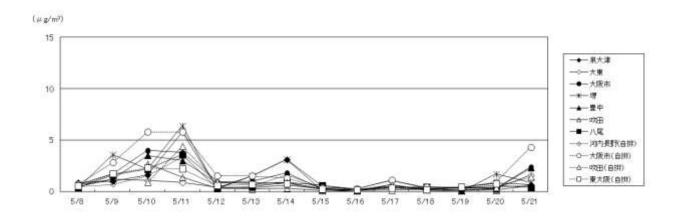
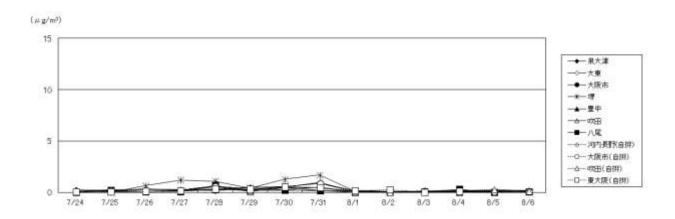
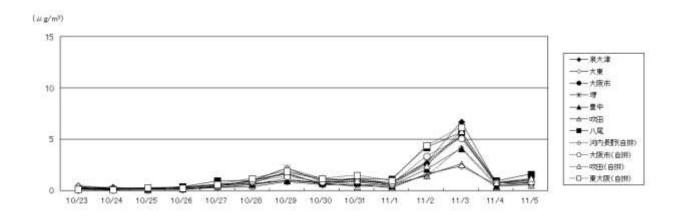





図 3-12(1) PM2.5 質量濃度の季節別経日変化

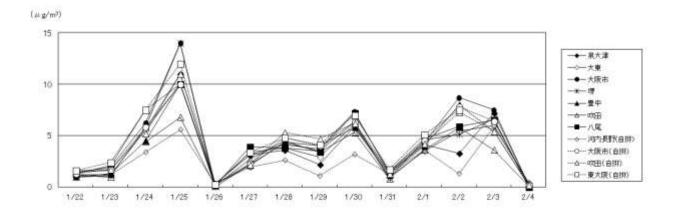
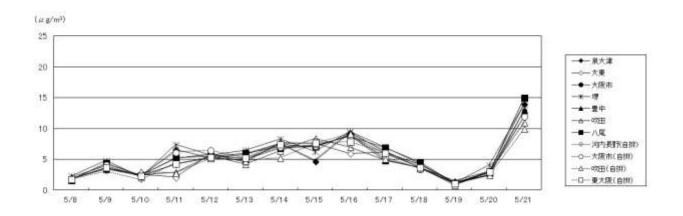
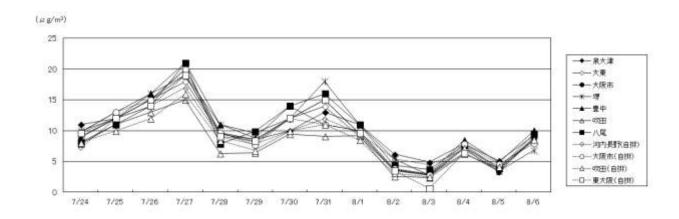
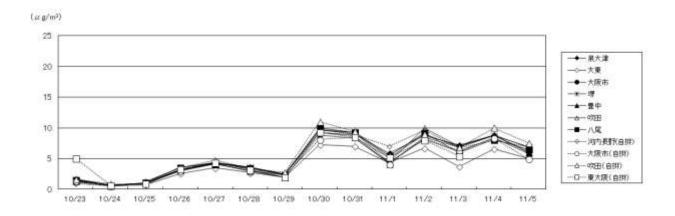





図 3-12 (2) PM_{2.5}に含まれる NO₃-濃度の季節別経日変化

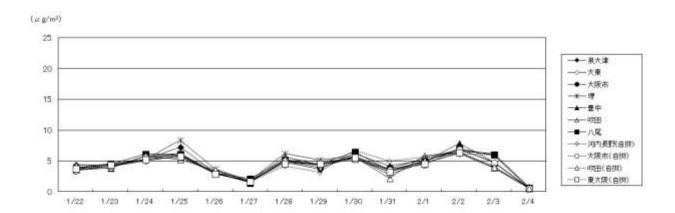
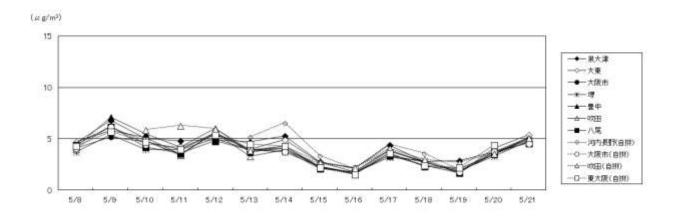
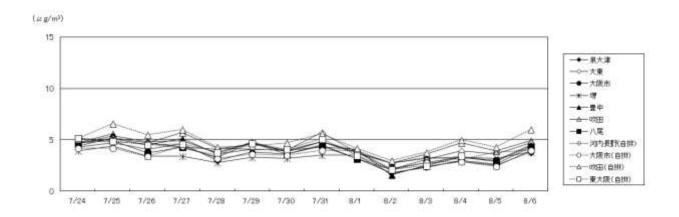
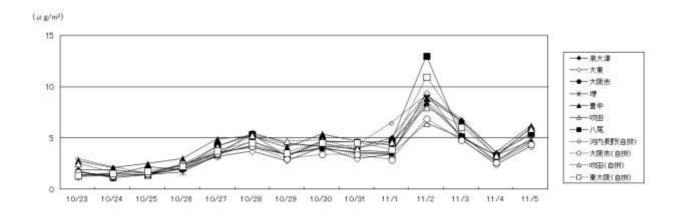





図 3-12 (3) PM_{2.5}に含まれる SO₄²⁻濃度の季節別経日変化

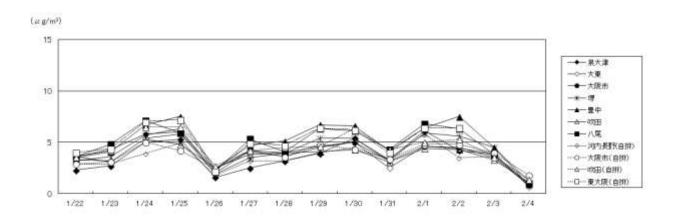
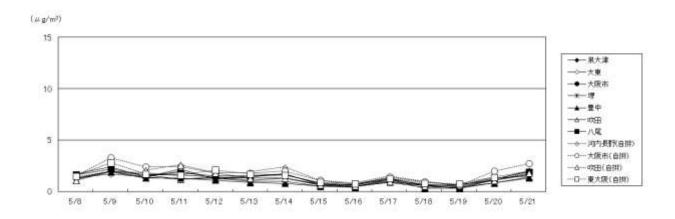
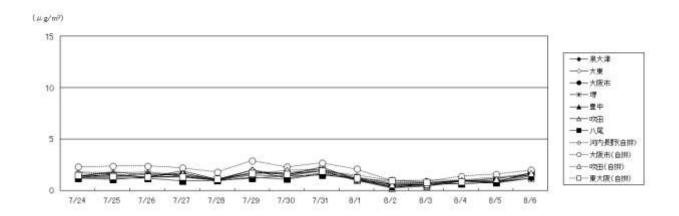
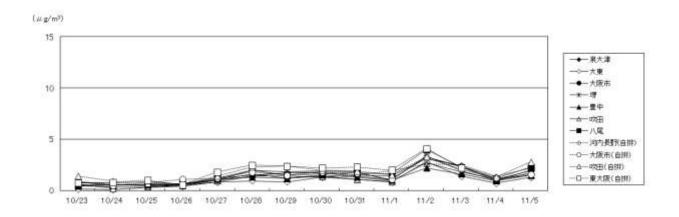





図 3-12(4) РМ_{2.5}に含まれる 00 濃度の季節別経日変化

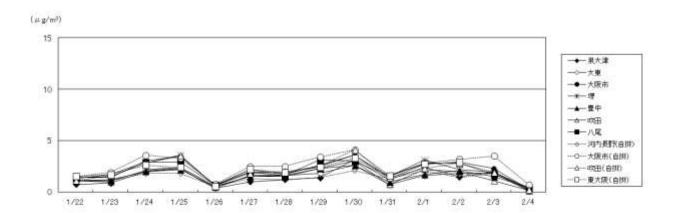


図 3-12 (5) PM_{2.5}に含まれる EC 濃度の季節別経日変化

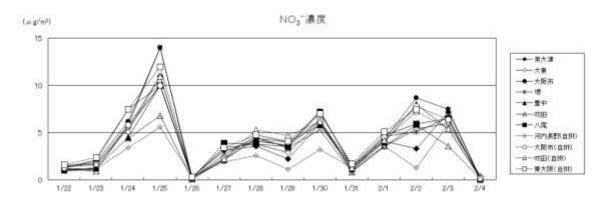


図 3-13 NO_2 濃度および $PM_{2.5}$ に含まれる NO_3 濃度の経日変化 (冬季)

④ 無機元素の日ごとの濃度

無機元素は、 $PM_{2.5}$ 質量濃度に占める割合は数%程度と低濃度であるが、 SO_4^2 や NO_3 のように大気中に排出されたガスが反応して粒子となることはないので、発生源を特定するうえで重要な手がかりとなる。大気中微小粒子状物質($PM_{2.5}$)成分測定マニュアルに発生源と指標成分の事例が示されている。表 3-5 に発生源と指標成分の主な事例を示す。

	指標成分											
発生源	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	ΑI	Τi	٧	Ni	Cr	Mn	Fe	Zn	Cu	Sb	K	As
土壌	0	0										
ブレーキ粉塵		0					0		0	0		
鉄鋼工業		0		0	0	0	0	0	0			
石油燃焼			0	0								
廃棄物焼却					0			0	0	0	0	0

表 3-5 発生源と指標成分の主な事例

上記の 12 成分と(13) Se および(14) Pb をあわせた無機元素濃度(14 成分)と PM_{2.5} 質量濃度との相関係数を表 3-6 に、季節平均値を図 3-14 に、経日変化を図 3-15 に示す。

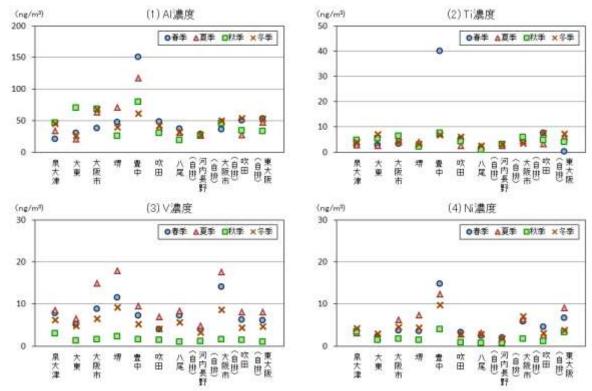

- $OPM_{2.5}$ 質量濃度と無機元素濃度との相関係数は3(3) $③のPM_{2.5}$ 質量濃度と主な成分濃度ほど大きくなかった。
- 〇成分ごと(As、Se および Pb 以外)の地点間の濃度変動も主な成分のように類似していることはなく、地域での排出の影響を受けていると考えられる。
- 〇石油燃焼の指標である V、Ni や鉄鋼工業の指標である Mn、Fe、Zn と $PM_{2.5}$ 質量濃度との相関係数が四季の中で冬季に最も大きかったことや、前述のとおり、冬季は $PM_{2.5}$ 質量濃度と NO_3 との濃度変動が類似していたことから、特に冬季は地域汚染の影響が大きかったと考えられる。
- OV 濃度は、平成 24 年度の調査結果と同様に春季・夏季に高い傾向があった。平成 25 年度は秋季は濃度が低く濃度の地点差も小さかった。その他の季節は地点差が大きく、特に、工業地域に近い大阪市(自排)や堺で濃度が高かった。
- 〇一方、As、Se および Pb は他の成分に比べて地点間の濃度変動が類似しており、同じ要因の影響が大きいと考えられる。
- 〇他の地点に比べて濃度が高い成分があった地点の状況は以下のとおりである。
 - ・豊中では他の地点に比べて濃度が高くなる成分が多かった。季節平均値でみると、AI(春季・夏季)、Ti(春季)、Ni(春季・夏季・秋季)、Cr(春季・夏季)、Fe(夏季)および Pb(春季) 濃度が他の地点に比べて高かった。
 - ・堺では春季、夏季および冬季に Zn および Cu 濃度が高い日が多かった。
 - ・大阪市(自排)では夏季および冬季に Mn 濃度が高い日が多かった。
 - ・大東では 11/1~11/5 に Zn 濃度が高かった。
 - ・大阪市では 1/22、1/25~1/28、1/30~1/31 に Se 濃度が高かった。

表 3-6 $PM_{2.5}$ 質量濃度と $PM_{2.5}$ に含まれる無機元素濃度との相関係数

	春季	夏季	秋季	冬季
(1) AI	0.15*	0.29	0.34	0.33
(2) Ti	0.10*	0.28	0.39	0.38
(3) V	0.57	0.51	0.65	0.82
(4) Ni	0.35	0.33	0.23 * *	0.53
(5) Cr	0.01*	0.06*	0.24	0.42
(6) M n	0.47	0.40	0.62	0.69
(7) Fe	0.42	0.36	0.54	0.60
(8) Zn	0.32	0.57	0.24	0.70
(9) Cu	0.37	0.40	0.65	0.62
(10)Sb	0.31	0.29	0.61	0.39
(11)K	0.57	0.64	0.86	0.74
(12)As	0.58	0.51	0.75	0.49
(13)Se	0.45	0.66	0.58	0.34
(14)Pb	0.19 * *	0.70	0.82	0.70

〇春季 n=121、 * 5%有意水準 0.181、 * * 1%有意水準 0.239

[○]夏季・秋季・冬季 n=132、*5%有意水準 0.174、**1%有意水準 0.229

※春季:5/8,10-11,13-20、夏季:7/24-8/4、秋季:10/23-11/3、冬季:1/22-2/2

図 3-14(1) РМ2.5に含まれる無機元素成分濃度の季節平均値

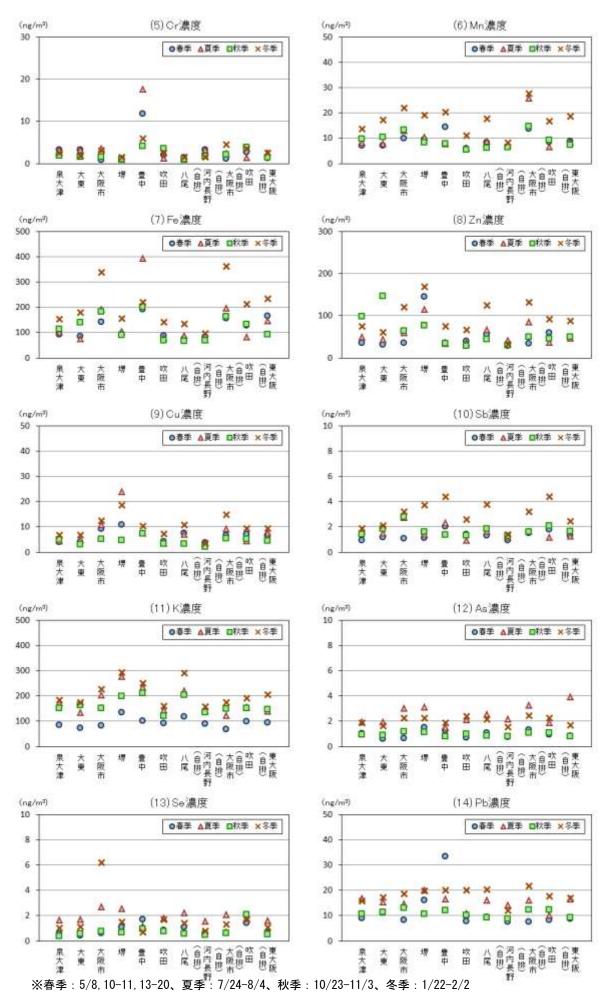
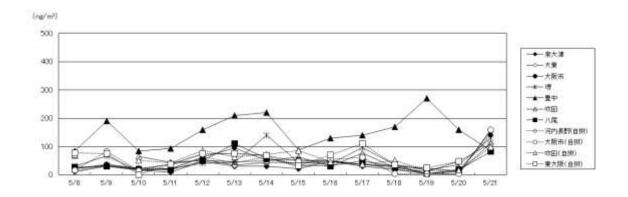
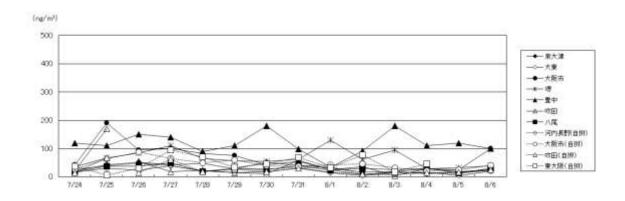
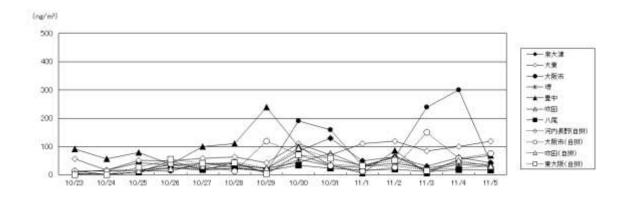





図 3-14(2) РМ_{2.5}に含まれる無機元素成分濃度の季節平均値

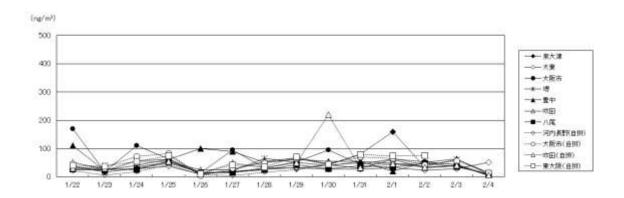
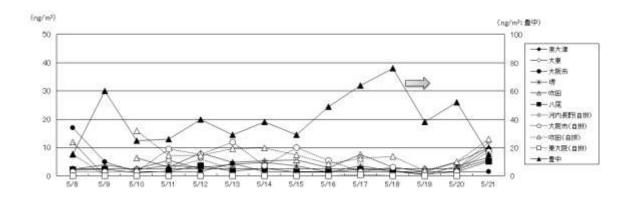
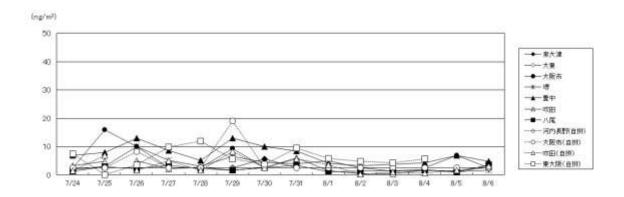
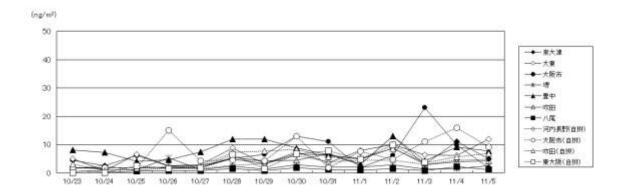





図 3-15 (1) PM_{2.5}に含まれる AI 濃度の季節別経日変化

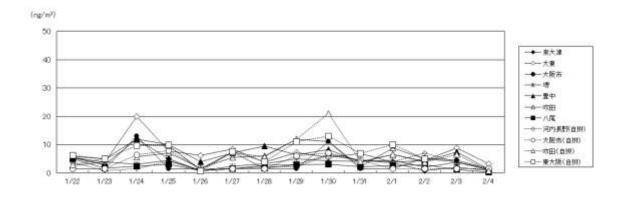
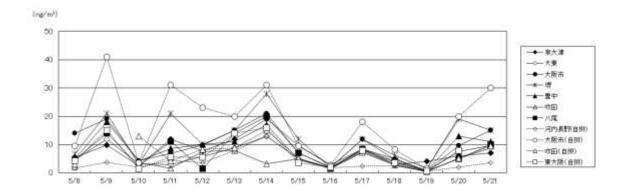
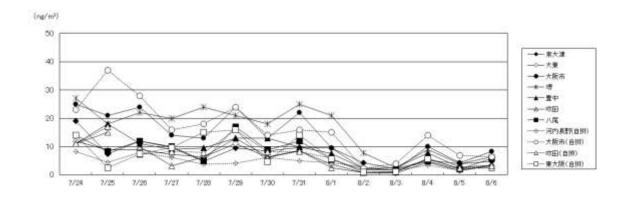
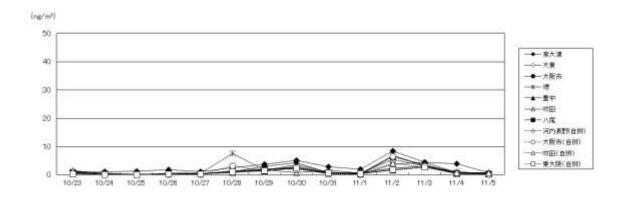





図 3-15 (2) PM_{2.5}に含まれる Ti 濃度の季節別経日変化

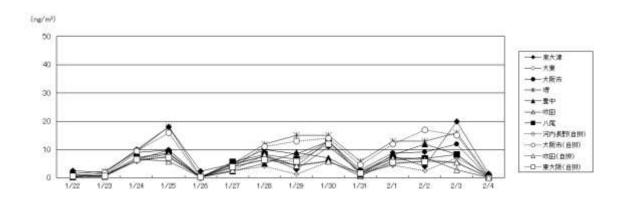
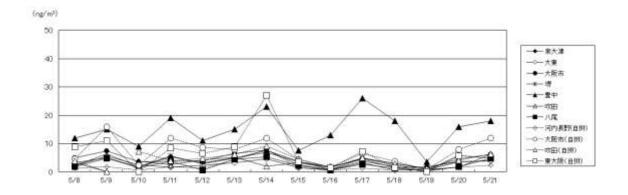
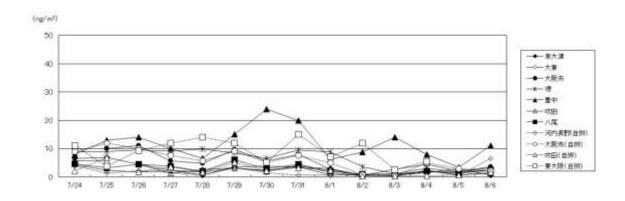
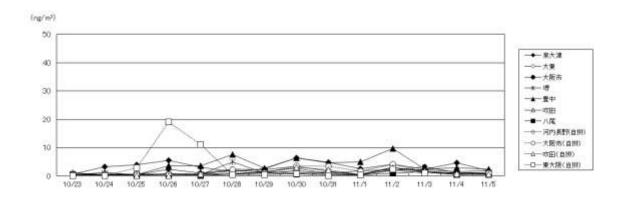





図 3-15 (3) PM_{2.5}に含まれる V 濃度の季節別経日変化

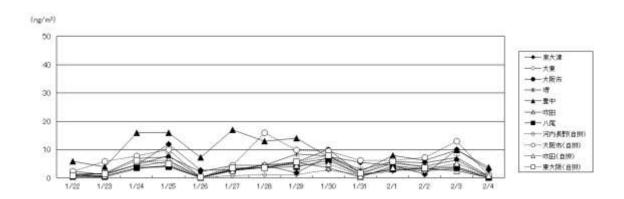


図 3-15 (4) PM_{2.5}に含まれる Ni 濃度の季節別経日変化

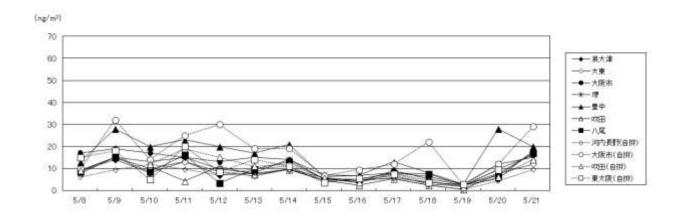
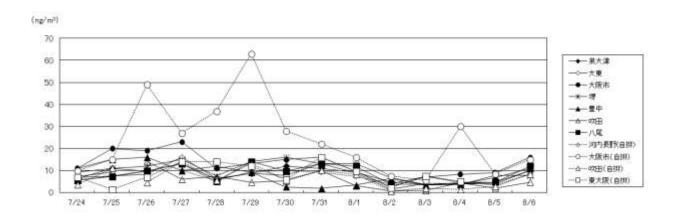
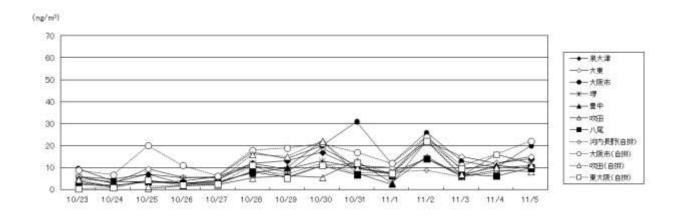





図 3-15 (5) PM_{2.5}に含まれる Cr 濃度の季節別経日変化

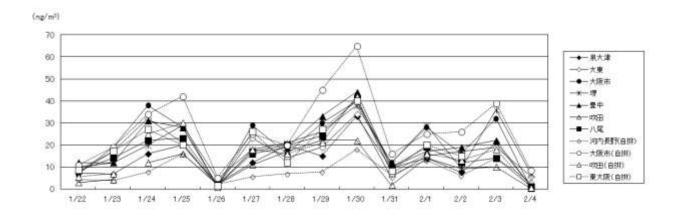
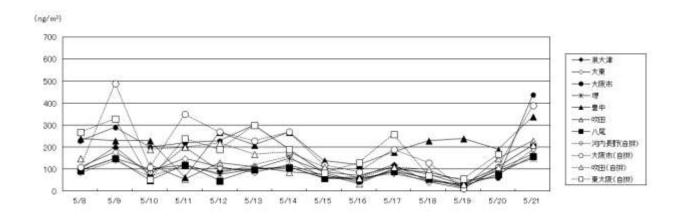
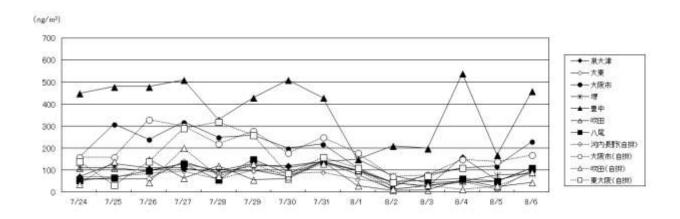
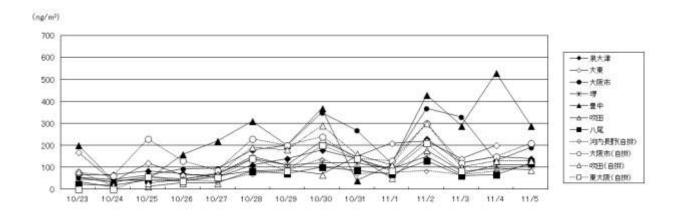





図 3-15 (6) PM_{2.5}に含まれる Mn 濃度の季節別経日変化

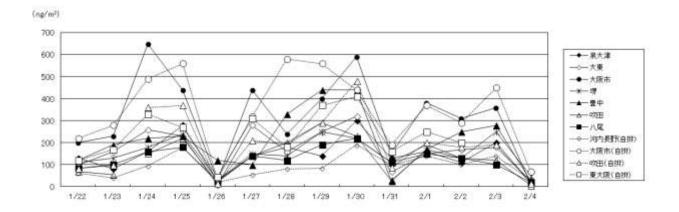
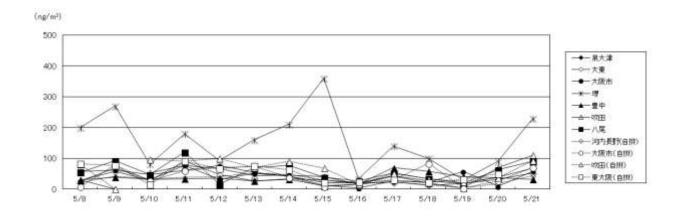
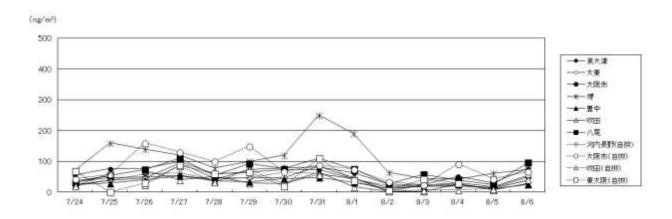
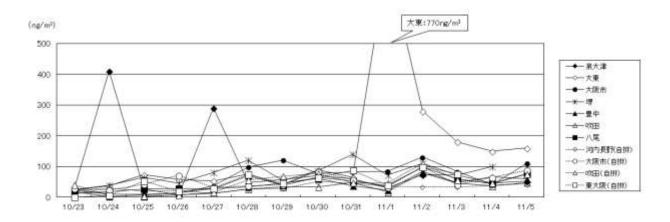





図 3-15 (7) PM_{2.5}に含まれる Fe 濃度の季節別経日変化

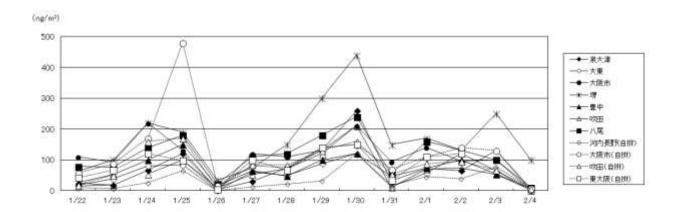
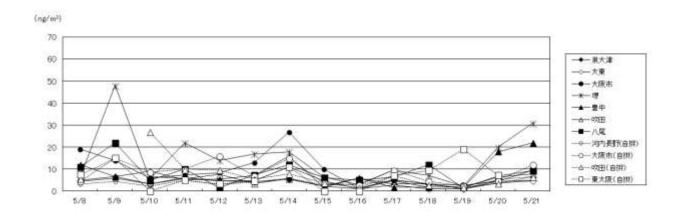
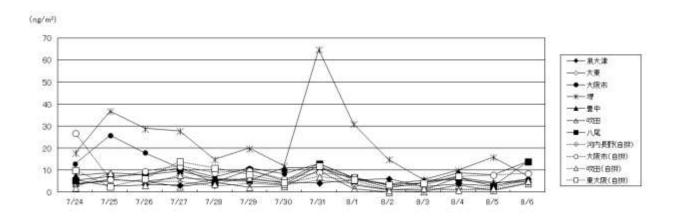
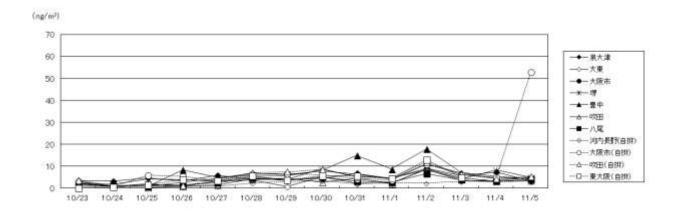





図 3-15 (8) PM_{2.5}に含まれる Zn 濃度の季節別経日変化

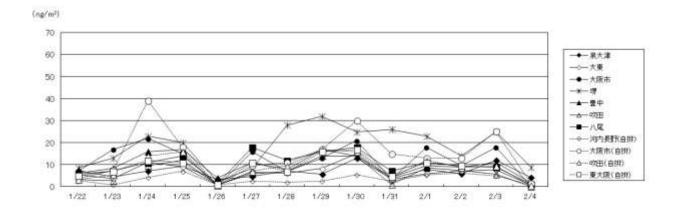
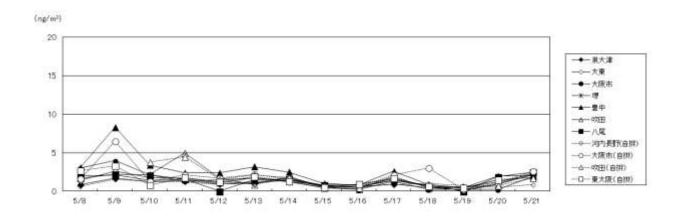
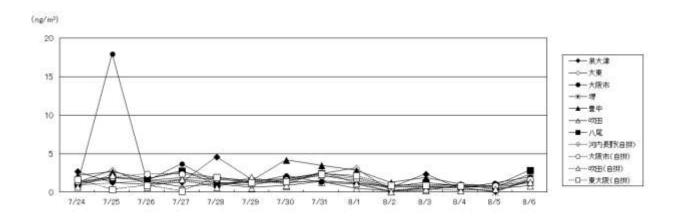
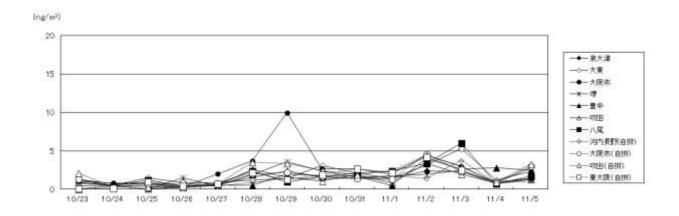





図 3-15 (9) PM_{2.5}に含まれる Cu 濃度の季節別経日変化

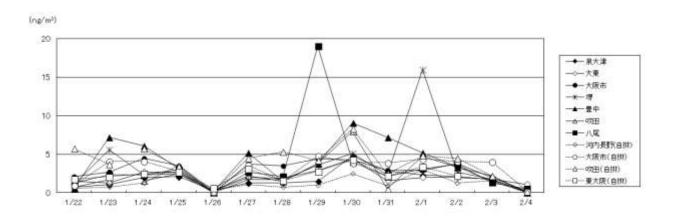
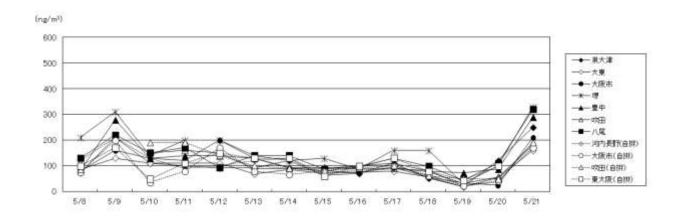
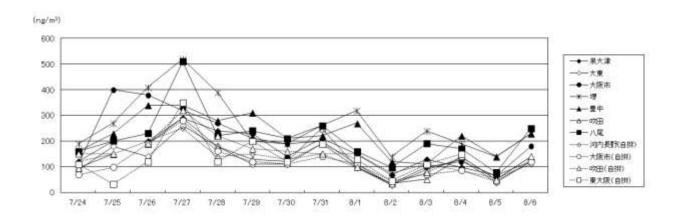
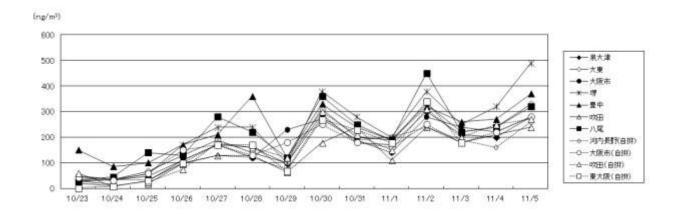





図 3-15 (10) PM_{2.5}に含まれる Sb 濃度の季節別経日変化

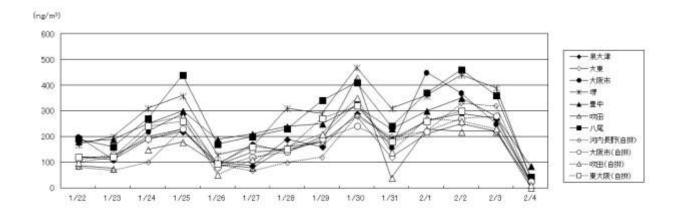
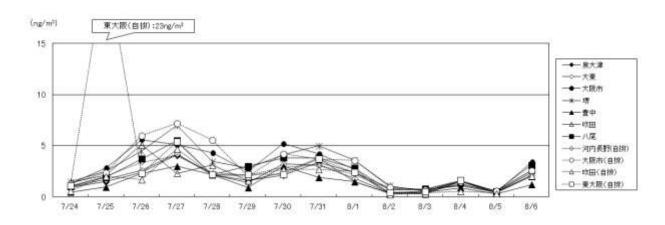
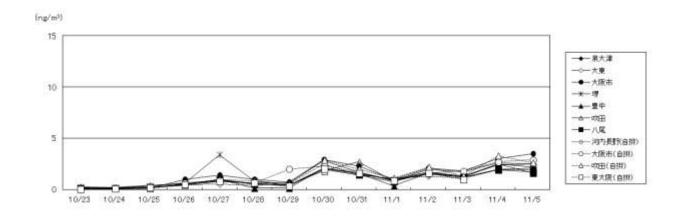




図 3-15 (11) PM_{2.5}に含まれる K 濃度の季節別経日変化

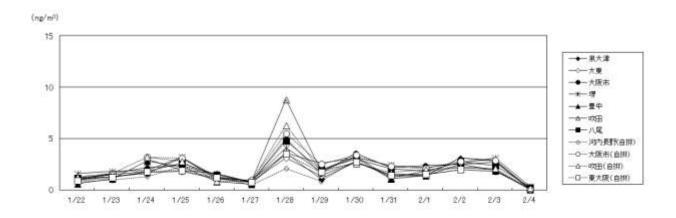
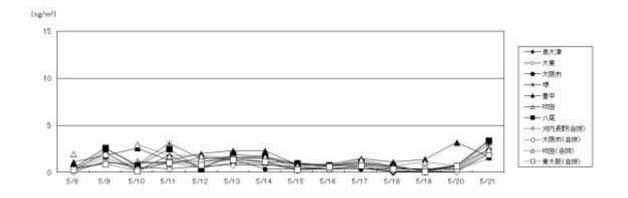
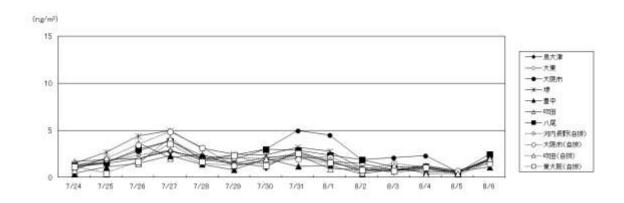
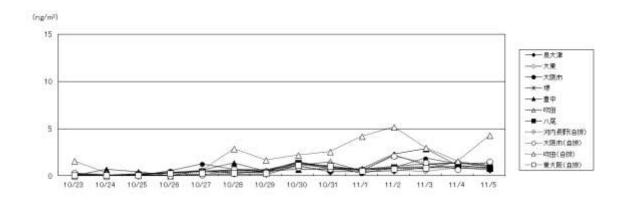





図 3-15 (12) PM_{2.5}に含まれる As 濃度の季節別経日変化

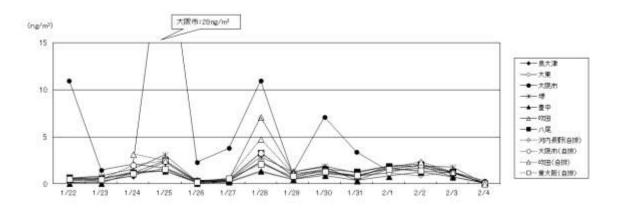
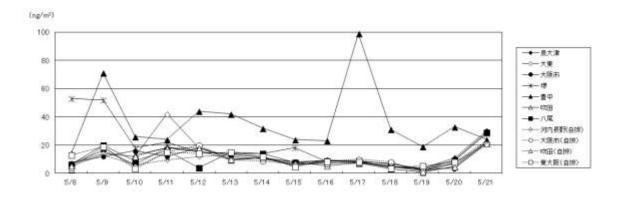
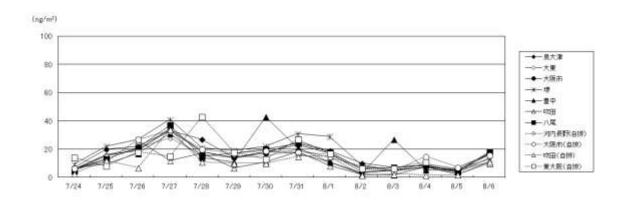
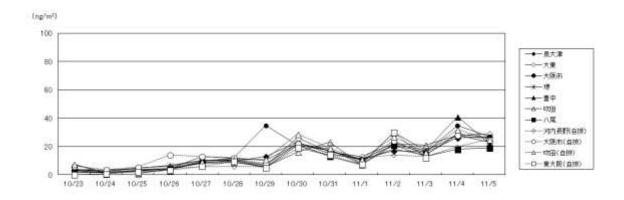





図 3-15 (13) PM_{2.5}に含まれる Se 濃度の季節別経日変化

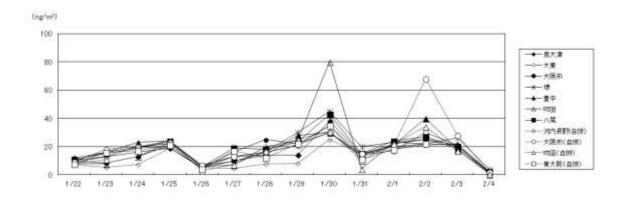


図 3-15 (14) PM_{2.5}に含まれる Pb 濃度の季節別経日変化

(4) 平成 23~25 年度の状況

泉大津では、平成23年度から毎年度、調査を実施している。表3-7に平成23~25年度の測定期間を示す。

季節	平成 23 年度	平成 24 年度	平成 25 年度			
春季	平成 24 年 3 月 9 日(金)	平成 24 年 4 月 18 日(水)	平成 25 年 5 月 8 日(水)			
	~ 3月23日(金)	~ 5月2日(水)	~ 5月 22日(水)			
百禾	平成 23 年 7月 29日(金)	平成 24 年 7月 26 日(木)	平成 25 年 7 月 24 日(水)			
夏季	~ 8月12日(金)	8月9日(木)	~ 8月7日(水)			
秋季	平成 23 年 11 月 4 日(金)	平成 24 年 11 月 1 日(木)	平成 25 年 10 月 23 日(水)			
	~11月18日(金)	~11月15日(木)	~11月6日(水)			
冬季	平成 24 年 1 月 27 日(金)	平成 25 年 1 月 24 日(木)	平成 26 年 1 月 22 日(水)			
	~ 2月10日(金)	~ 2月7日(木)	~ 2月5日(水)			

表 3-7 測定期間

各年度における 56 日間の $PM_{2.5}$ 中の各成分濃度及び $PM_{2.5}$ 質量濃度に占める各成分濃度の割合の平均値を図 3-16 に示す。また、 $PM_{2.5}$ 質量濃度の季節平均値を図 3-17 に、 $PM_{2.5}$ 中の主な成分濃度の季節平均値を図 3-18 に示す。

- 〇PM25質量濃度の年平均値は、平成23・24年度に比べ、平成25年度に高かった。
- 〇平成 23·24 年度に比べ、平成 25 年度は主な成分濃度も高く、特に SO₄2-濃度が高かった。
- OPM_{2.5} 質量濃度に占める 0C 濃度の割合の年平均値は平成 25 年度に低く、SO₄²-濃度の割合は平成 23 年度に低かった。
- 〇PM25質量濃度に占めるEC濃度の割合の年平均値は年度によって違いがあまりなかった。
- 〇PM_{2.5} 質量濃度の季節平均値は、年平均値と同様に、平成 23・24 年度に比べ、平成 25 年度に 高かった。平成 23・24 年度は各季節の中で夏季に最も低かったが、平成 25 年度は夏季に最も 高かった。
- ONO₃濃度は、各年度とも、冬季に高く、夏季に低く、季節変動が類似していた。
- OSO_4^2 -濃度は、年度によって季節変動が異なっていた。 $PM_{2.5}$ 質量濃度が最も高かった平成 25 年度の夏季は、 SO_4^2 -濃度も最高濃度を示し、他の年度・季節の約 2 倍であった。
- 〇00 及び EC 濃度は、平成 24・25 年度は季節変動があまりなかったが、平成 23 年度は秋季に高かった。

^{※1}日(10時から翌日9時の23時間)×14回×4季節

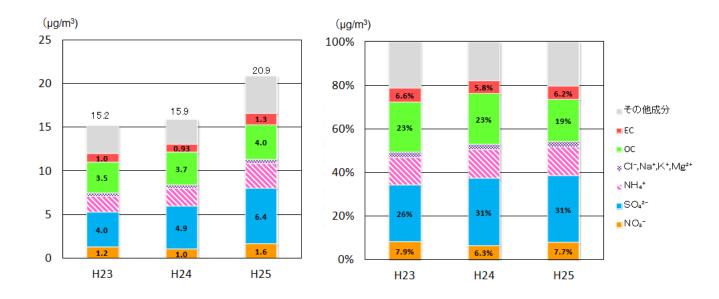


図 3-16 PM_{2.5}中の各成分濃度及びPM_{2.5}質量濃度に 占める各成分濃度の割合(年平均値)

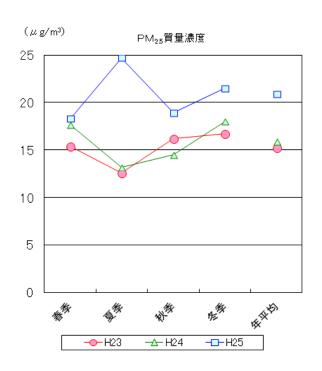


図 3-17 PM_{2.5}質量濃度(季節平均値)

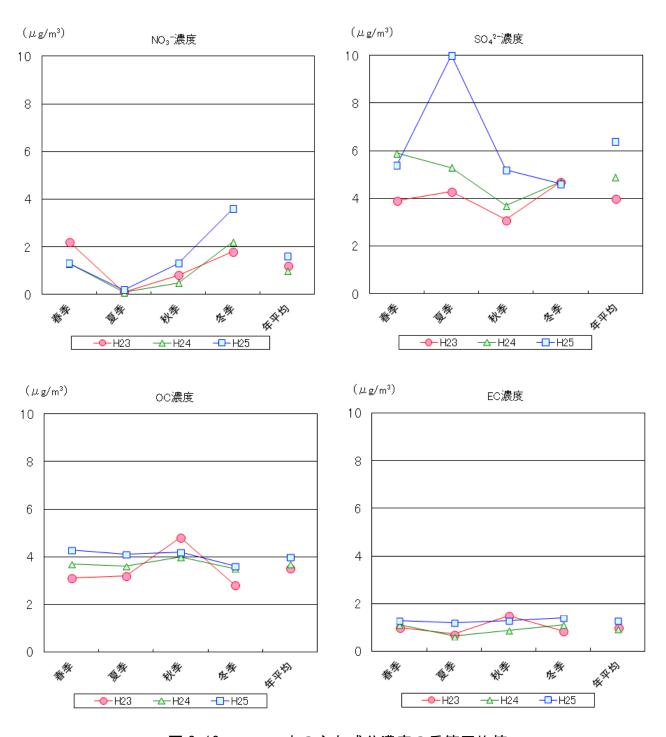


図 3-18 РМ2.5中の主な成分濃度の季節平均値

(5) PM_{2.5}高濃度日の状況

① PM_{2.5}質量濃度

 $PM_{2.5}$ 質量濃度の経日変化を図 3-19(再掲)に、 $PM_{2.5}$ 高濃度日の $PM_{2.5}$ 質量濃度を表 3-8 に示す。

1 地点でも環境基準の日平均値である $35 \mu \text{ g/m}^3$ を超過した日は春季の 5/21、夏季の $7/27 \cdot 7/31$ 、秋季の $11/2 \cdot 11/3$ 、冬季の $1/25 \cdot 1/30 \cdot 2/2$ であった。この 8 日間のうち、7/27 は全地点で $35 \mu \text{ g/m}^3$ を超過した。また、最高濃度は $51.3 \mu \text{ g/m}^3$ (11/2 八尾)であった。これらの日を $PM_{2.5}$ 高濃度日として、図 3-20 に示す方法で、高濃度となった主な原因を推定した。

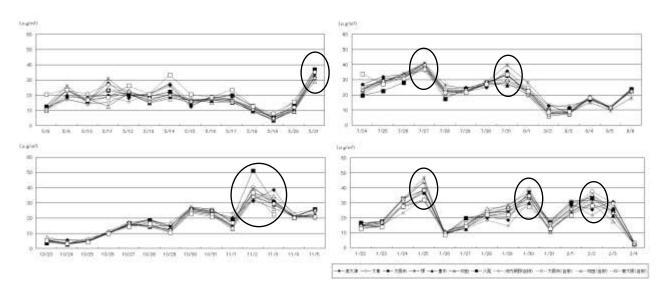


図 3-19 PM₂₅質量濃度の経日変化

表 3-8 PM2.5 高濃度日のPM2.5 質量濃度

 $(\mu \text{ g/m}^3)$

		泉大津	大東	大阪市	堺	豊中	吹田	八尾	河内長野(自排)	大阪市	吹田(自排)	東大阪(自排)
									(11)	(11)	(11)	(11)
春季	5月21日	34. 4	32. 2	32. 3	<u>35. 7</u>	31.5	29. 4	<u>37. 0</u>	34. 4	<u>35. 4</u>	31.9	-
夏季	7月27日	<u>40. 6</u>	<u>37. 7</u>	<u>38. 7</u>	41.1	<u>40. 3</u>	<u>40. 8</u>	<u>39. 0</u>	<u>35. 8</u>	<u>39. 6</u>	<u>38. 6</u>	<u>37. 0</u>
	7月31日	<u>35. 9</u>	34. 2	33. 4	39.9	26. 5	27. 9	32. 9	29. 0	29. 4	30. 2	33. 6
秋季	11月2日	31.7	<u>40. 8</u>	<u>36. 8</u>	<u>39. 5</u>	34. 4	32. 2	<u>51. 3</u>	<u>35. 1</u>	34. 4	<u>36. 1</u>	<u>36. 9</u>
	11月3日	38.7	28. 9	31. 4	31.8	29. 1	26. 4	30. 7	31.3	29. 6	34. 8	22. 7
冬季	1月25日	39.3	<u>37. 7</u>	43.8	46.9	<u>36. 9</u>	31. 4	38.3	32. 7	<u>38. 5</u>	<u>44. 7</u>	32. 1
	1月30日	<u>37. 7</u>	33. 7	<u>35. 8</u>	<u>36. 7</u>	29. 8	33. 4	34. 8	30. 3	34. 6	39.7	27. 7
	2月2日	25.8	29. 0	<u>35. 3</u>	31.5	33. 6	29. 5	33. 3	21.7	37.7	<u>35. 7</u>	28. 2

[※]下線は、環境基準の日平均値である 35 μg/m³ 超過をあらわす。

[※]網掛けは、その日の最高濃度をあらわす。

OPM。5質量濃度が高濃度となった原因の推定

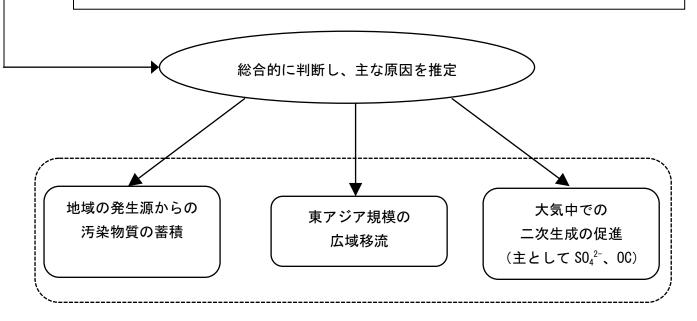
〇成分分析結果

- ・ P M_{2.5} 質量濃度と濃度変動が類似し、濃度が高い主な成分(NO₃⁻、SO₄²⁻及び OC)
- 主な成分以外の濃度上昇成分

石炭燃焼・・・例えば Pb、As

石油燃焼・・・例えばV、Ni

鉄鋼工業・・・例えば Fe、Cu、Mn


二次生成・・・例えばシュウ酸イオン(C₂O₄²⁻)

○気象データ

- ・風速が弱い → 大気が拡散しにくい
- ・生駒山と大阪市内の気温差が小さい → 大気が安定(拡散しにくい)
- ・気温が高く、日射量が多い → 二次生成の促進
- ・後方流跡線解析(*1)等による気流の方向

〇大気汚染物質

- ・NOx や非メタン炭化水素 (NMHC) 濃度の上昇 → 地域の発生源の影響の可能性
- ・光化学オキシダント(OX)が昼間に高濃度 → 二次生成の促進の可能性
- ・光化学オキシダント(OX)が夜間も減少しない → 広域移流の影響の可能性

(*1)後方流跡線解析:風向・風速等の気象データを用いて、気塊がどこから流れて来たのか時間を遡って 計算する方法。

図 3-20 РМ_{2.5}質量濃度が高濃度となった原因の推定方法

② 高濃度原因の推定

a 春季(高濃度日:5月21日)

〇成分分析結果

 $PM_{2.5}$ 質量濃度および NO_3^- 、 SO_4^{2-} 、OC 濃度 $(5/18\sim5/21)$ を図 3-21 に、高濃度日 (5/21) と高濃度日以外平均 $(5/8\sim5/20$ 平均) の NO_3^- 、 SO_4^{2-} および OC 濃度を図 3-22 に示す。

 $PM_{2.5}$ 質量濃度は $5/20\sim5/21$ にかけて大きく上昇し、5/21 は $29.4\sim37.0\,\mu\,g/m^3$ と 10 地点中 $35\,\mu\,g/m^3$ を超過した。

 SO_4^{2-} も同様の濃度変動を示し、さらに、高濃度日以外の平均値に比べても 5/21 は濃度が高かった。図 3-23 に示すように、 $PM_{2.5}$ 質量濃度に占める SO_4^{2-} 濃度の割合も 5/20 は 19~31%であったのに対し、5/21 は 31~44%と上昇した。以上より、5/21 に SO_4^{2-} 濃度が上昇したことが、 $PM_{2.5}$ 質量濃度が高くなった原因の 1 つと考えられる。

また、図 3-24 に示すように、石炭燃焼により発生するといわれている Pb、As 濃度も豊中を除いて P M_{2.5}質量濃度と濃度変動が類似していた。

○気象データ

一般に大気が100m上昇すると温度は0.60~0.65℃下がることから、大阪管区気象台(標高23m)とアメダス生駒山(標高626m)の理論上の気温差は約3.5~4.0℃である。両地点の気温差がこれより小さいと大気が安定する(拡散しにくい)と考えられるため、両地点の気温差を大気の安定の指標とした。

5/20~5/21 は気温差が 3.5℃を下回ることはなかった。また、風速は、22 日 12 時~18 時の間、

2.4~4.0m/s であり、5/21 は汚染物質が蓄積しやすい気象条件ではなかった。(図 3-25)

後方流跡線解析 (NOAA HYSPLIT MODEL) を用いて気流の方向を推定したところ、5/21 は大陸方面から大気が流れてきていた。(図 3-26)

この期間は、気象データからは、汚染物質が蓄積しやすい気象条件ではなかった。また、大陸からの気流が運ばれやすい気象条件であった。石炭燃焼により発生するといわれている Pb、As や $S0_4^{2-}$ などの濃度が上昇したのは、東アジア規模の広域移流が主な原因であったと考えられる。以上より、5/21 に $PM_{2.5}$ 質量濃度が上昇した主な原因は、東アジア規模の広域移流であったと推測された。

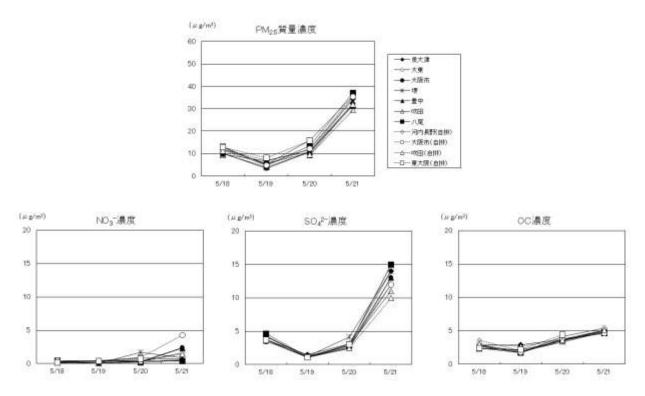


図 3-21 РМ_{2.5}質量濃度および各成分濃度(5/18~5/21)

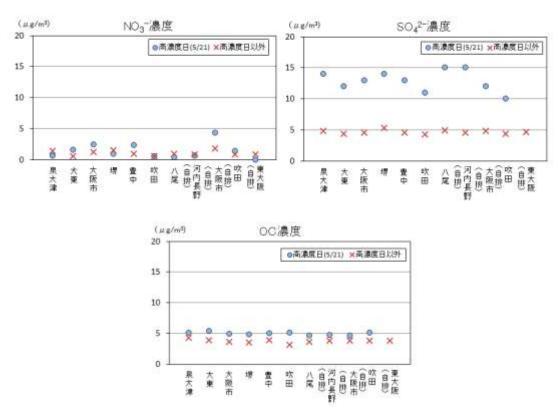


図 3-22 PM_{2.5}中の各成分濃度

(高濃度日:5/21、高濃度日以外:5/8-5/20平均)

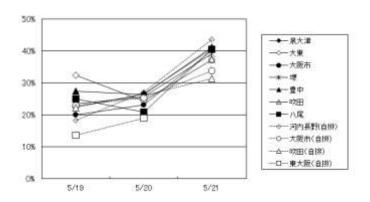


図 3-23 PM_{2.5}質量濃度に占める SO₄2-濃度の割合(5/19~5/21)

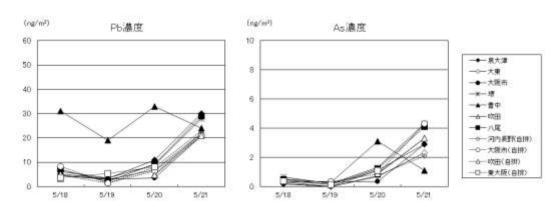


図 3-24 PM_{2.5}中の Pb および As 濃度 (5/18~5/21)

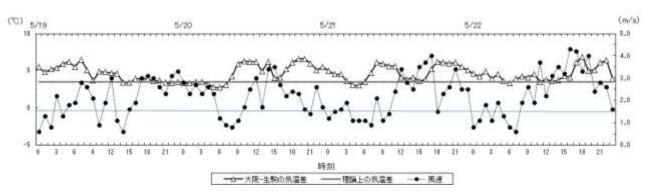


図 3-25 大阪管区気象台とアメダス生駒山の気温差と大阪管区気象台の風速

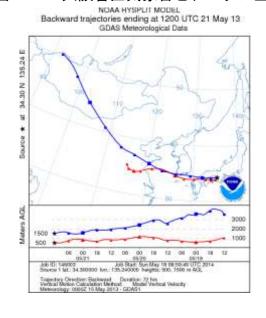


図 3-26 5月21日21時の後方流跡線 (3日前、観測地点高度:500m・1500m、 NOAA HYSPLIT MODEL)

b 夏季(高濃度日: 7月27日・31日)

〇成分分析結果

 $PM_{2.5}$ 質量濃度および NO_3^- 、 SO_4^{2-} 、OC 濃度 $(7/24\sim8/1)$ を図 3-27 に、高濃度日 $(7/27\cdot7/31)$ と高濃度日以外平均 $(7/27\cdot7/31$ を除く $7/24\sim8/6$ 平均) の NO_3^- 、 SO_4^{2-} および OC 濃度を図 3-28 に示す。

 $PM_{2.5}$ 質量濃度は $7/24\sim7/27$ にかけて徐々に上昇し、7/27 は $35.8\sim41.1\,\mu\,g/m^3$ となり 11 地 点全地点で $35\,\mu\,g/m^3$ を超過した。その後は、7/28 に一度下降し、再度 7/31 にかけて上昇した。 7/31 は 7/27 に比べて地点間で濃度差があり、 $29.0\sim39.9\,\mu\,g/m^3$ の濃度範囲で、泉大津および堺で $35\,\mu\,g/m^3$ を超過した。

 $PM_{2.5}$ 質量濃度と同様の濃度変動を示した成分は SO_4^{2-} であった。高濃度日以外の平均値に比べても 7/27 は全地点とも濃度が高く、豊中・八尾で平成 25 年度の調査期間最大値 $(21 \mu g/m^3)$ を示した。一方、7/31 は高濃度日以外の平均値に比べて、泉大津・大東・大阪市・堺・八尾・東大阪 (自排) では濃度が高かったが、豊中・吹田・河内長野(自排)・大阪市(自排)・吹田(自排)ではほぼ同じ濃度であった。図 3-29 に示すように、 $PM_{2.5}$ 質量濃度に占める SO_4^{2-} 濃度の割合は、7/27 は堺と吹田を除き前後の日に比べて高く、最大値は 54% (八尾) であった。

図 3-30 に示すように、地点によってばらつきがあるものの、Pb および As 濃度も $PM_{2.5}$ 質量濃度と濃度変動が類似している地点が多かった。また、7/27 の方が 7/31 より濃度が高い地点が多かった。

光化学反応で二次生成する有機粒子の成分にはジカルボン酸が多いことが報告されており、図 3-31 に示すように、 C_2O_4 濃度も $PM_{2.5}$ 質量濃度と濃度変動が類似していた。Pb および As 濃度とは異なり、7/31 の方が 7/27 より濃度が高かった。

○気象データ

7/24~8/1 の間、大阪管区気象台(標高 23m) とアメダス生駒山(標高 626m) の気温差は 3.5℃ を下回ることはなかったが、31 日は午前中に風速が 1.5m/s 以下になることが多く風が弱かった。 (図 3-32)

後方流跡線では、27、31 日共に、大陸方面から大気が流れてきており、27 日の方が気流の方向が大陸よりであった。(図 3-33)

図 3-34 の天気図(左)に示すように、夏季は太平洋高気圧の張り出しが強く高温が続き光化 学スモッグが発生しやすい気象条件の時に高濃度となる傾向にあるが、天気図(右)に示すよう に、今季は高気圧の位置が他の年と異なり、日本の南海上で勢力が強く、大陸からの気流が運ば れやすい状態であったと考えられる。

〇大気汚染物質

光化学オキシダントは 7/27 は夜間も濃度が高かった。一方、7/31 は、昼間に上昇し夜間になると低下した。(図 3-35)

7/27、7/31 共に、大陸からの気流が運ばれやすい気象条件であった。Pb、As や SO_4^2 などの濃度が上昇したのは、東アジア規模の広域移流が主な原因であったと考えられる。その影響は、後方流跡線の方向と 7/27 は光化学オキシダント濃度が夜間も高かったことから、7/27 の方が顕著であったと推測される。

さらに、 $C_2O_4^{2-}$ が $PM_{2.5}$ 質量濃度と濃度変動が類似していたことから、 SO_4^{2-} などの濃度上昇は二次生成の促進の影響もあったと考えられる。7/31 は 7/27 に比べて $PM_{2.5}$ 質量濃度の地点間の濃度差が大きいことや $C_2O_4^{2-}$ 濃度が高かったことから、二次生成の促進は 7/31 の方が顕著であった

と考えられる。

以上より、7/27 および 7/31 に $PM_{2.5}$ 質量濃度が上昇した主な原因は、東アジア規模の広域移 流と二次生成の促進であったと推測された。

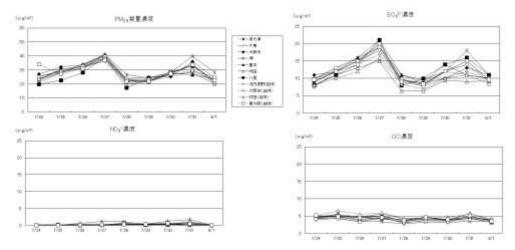


図 3-27 РМ25 質量濃度および各成分濃度 (7/24~8/1)

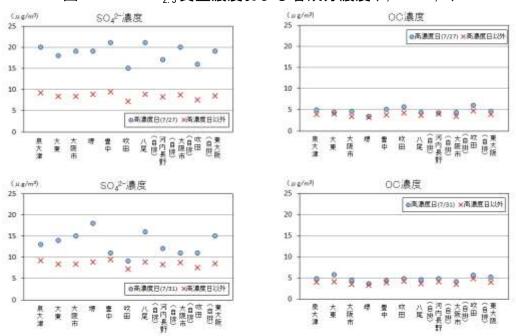


図 3-28 PM_{2.5}中の各成分濃度

(高濃度日:7/27・7/31、高濃度日以外:7/27・31 を除く7/24-8/6 平均)

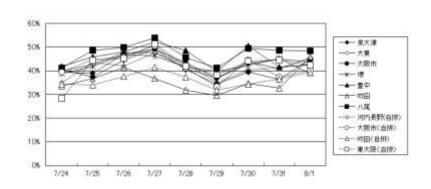


図 3-29 PM_{2.5}質量濃度に占める SO₄2-濃度の割合(7/24~8/1)

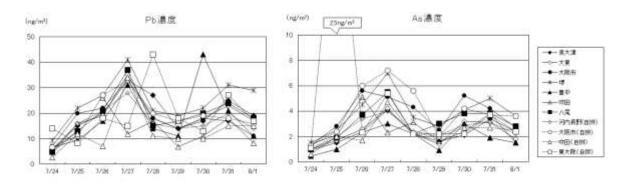


図 3-30 PM_{2.5}中の Pb および As 濃度 (7/24~8/1)

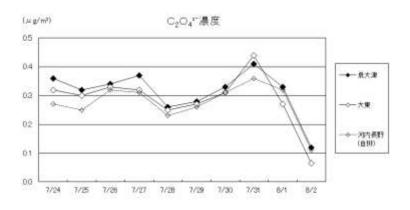


図 3-31 PM_{2.5}中の C₂O₄²⁻濃度 (7/24~8/2)

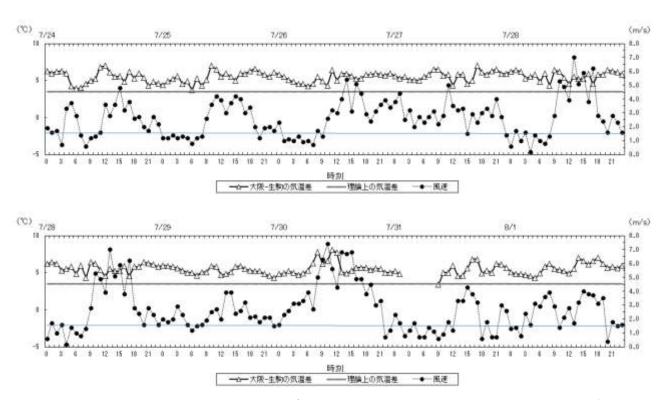


図 3-32 大阪管区気象台とアメダス生駒山の気温差と大阪管区気象台の風速

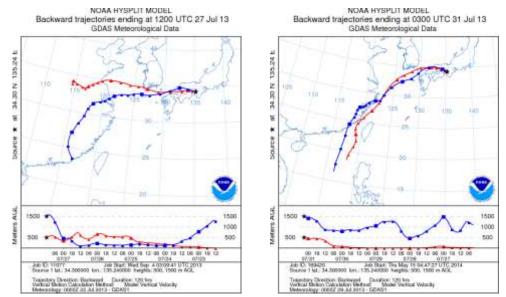
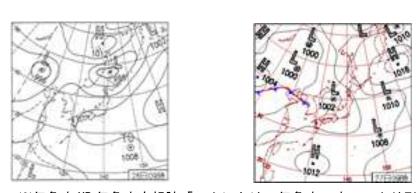



図 3-33 後方流跡線(左:7月27日21時、右:7月31日12時) (5日前、観測地点高度:500m・1500m、NOAA HYSPLIT MODEL)

※気象庁 HP 気象庁広報誌「こんにちは!気象庁です!」より引用 図 3-34 天気図 (左:平成 24 年 7 月 28 日 (土)、右:平成 25 年 7 月 27 日 (土))

※河内長野(自排)は三日市公民館、大阪市(自排)は淀中学校、吹田(自排)は吹田市川園のデータ。 図 3-35 光化学オキシダント濃度の経時変化

c 秋季(高濃度日: 11月2日·3日)

〇成分分析結果

 $PM_{2.5}$ 質量濃度および $N0_3^-$ 、 $S0_4^{2-}$ 、00 濃度(11/1~11/4、 $S0_4^{2-}:10/29~11/4$)を図 3-36 に、高 濃度日 $(11/2\cdot11/3)$ と高濃度日以外平均 $(11/2\cdot3$ を除く 10/23~11/5 平均)の $N0_3^-$ 、 $S0_4^{2-}$ および00 濃度を図 3-37 に示す。

 $PM_{2.5}$ 質量濃度は $11/2\sim11/3$ に高かった。11/2 は八尾で平成 25 年度の調査期間最大値 (51.3 μ g/m³) を示した。八尾以外の地点も 31.7~40.8 μ g/m³ の濃度範囲となり八尾を含め 7 地点で 35 μ g/m³ を超過した。泉大津は他の地点と濃度変動が異なり、11/3 に 35μ g/m³ を超過した。

 $PM_{2.5}$ 質量濃度(泉大津除く)と同様の濃度変動を示した成分は 00 であった。高濃度日以外の平均値に比べても 11/2 は濃度が高く、全地点で平成 25 年度の調査期間最大値 $(6.5 \sim 13 \, \mu \, g/m^3)$ を示した。一方、泉大津の $PM_{2.5}$ 質量濃度と同様の濃度変動を示した成分は NO_3 であった。 11/3 は高濃度日以外の平均値に比べて、全地点で濃度が高かった。

00 は 11/3 に比べて 11/2 に地点間の濃度差が大きく、高濃度日以外の平均値との濃度差も大きかった。一方、 $N0_3$ は 11/2 に比べて 11/3 に地点間の濃度差が大きく、高濃度日以外の平均値との濃度差も大きかった。

 SO_4^2 は 11/3 に比べて 11/2 に高濃度日以外の平均値との濃度差が大きかった。大東は他の地点に比べて濃度が低かったが、上述と比べ地点間の濃度差は小さかった。

図 3-38 に示すように、 $C_2O_4^2$ は 0C と濃度変動が類似していた。前述のように、 $C_2O_4^2$ -は光化学反応による二次生成の指標となる物質であり、0C 濃度の上昇は光化学反応による二次生成の促進が考えられる。

図 3-39 に示すように、Pb および As は SO_a^2 と濃度変動が類似していた。

○気象データ

11/2 の 3 時~14 時および 11/3 の 0 時~11/4 の 2 時まで、大阪管区気象台(標高 23m)とアメダス生駒山(標高 626m)の気温差は 3.5° Cを下回っており、大気が安定しやすい気象条件であった。さらに、風速も 1.5m/s 以下になることが多く、風が弱かった。(図 3-40)

平均気温は、11/2 が 17.9°C、11/3 が 16.9°Cと 11 月上旬の平年値(15.6°C)に比べて高かった。(表 3–1)

後方流跡線によると、11/2 は大陸方面から大気が流れてきており、11/3 は気流が日本上空を循環していた。(図 3-41) 化学天気予報システム(CFORS) による硫酸塩エアロゾルの分布予測図でも後方流跡線と同様に、11/2 の大阪府域の硫酸塩エアロゾルの分布は大陸からの移流が予測されていた。(図 3-42)

〇大気汚染物質

11/2 は前後の期間に比べて NOx 濃度が高かった。(図 3-43)

11/2、11/3 共に、風が弱く大気が安定しやすい気象条件で、汚染物質が蓄積しやすい状況であった。11/2 は気温も高く 00 および $C_2O_4^2$ -濃度が上昇したことから光化学反応による二次生成の促進があったと考えられる。一方、11/2 に濃度が高かった N0x は 11/3 には $N0_3$ -へと反応が進み、 $N0_3$ -濃度が上昇したと考えられる。

11/2 は大陸からの気流が運ばれやすい気象条件であった。 SO_4^2 などの濃度が上昇したのは、大陸からの移流の影響があったと考えられる。

以上より、 $PM_{2.5}$ 質量濃度が上昇した主な原因は、11/2 は<u>東アジア規模の広域移流</u>と<u>二次生成の促進</u>で、11/3 は地域の発生源からの汚染物質の蓄積であったと推測された。

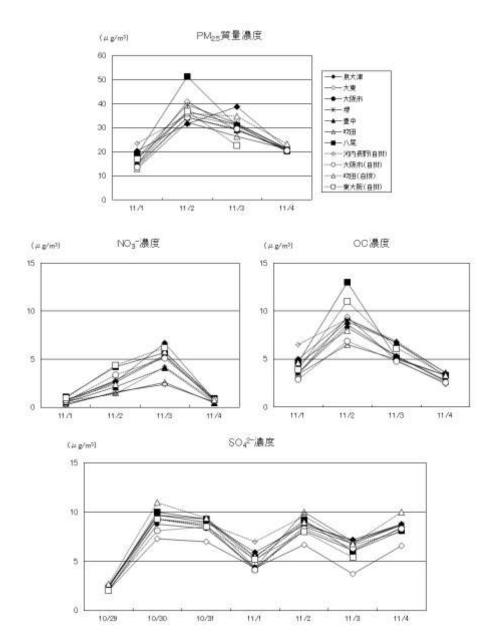


図 3-36 PM_{2.5}質量濃度および各成分濃度(11/1~11/4、SO₄²⁻:10/29~11/4)

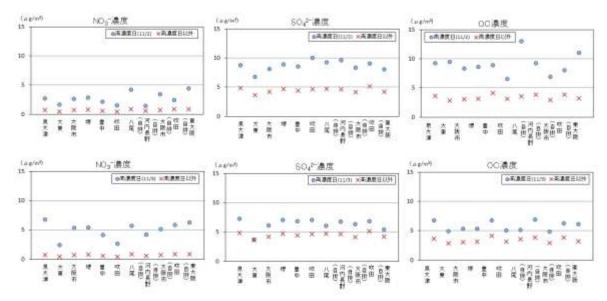


図 3-37 РМ_{2.5}中の各成分濃度

(高濃度日:11/2・11/3、高濃度日以外:11/2・3を除く10/23-11/5平均)

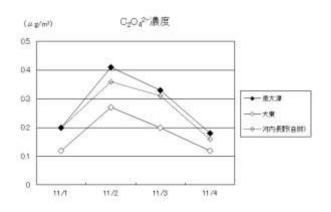


図 3-38 $PM_{2.5}$ 中の $C_2O_4^{2-}$ 濃度 $(11/1 \sim 11/4)$



図 3-39 PM_{2.5}中の Pb および As 濃度 (10/29~11/4)

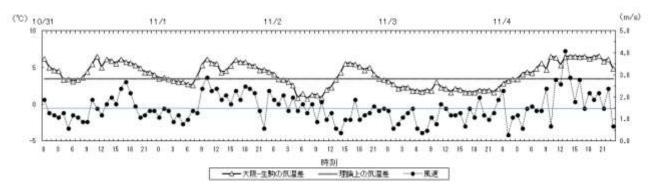
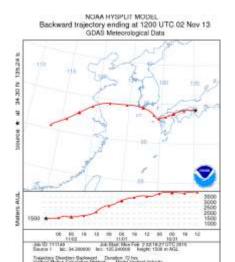
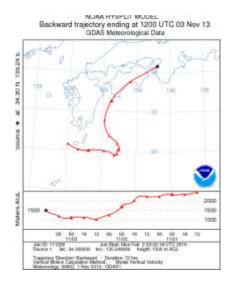
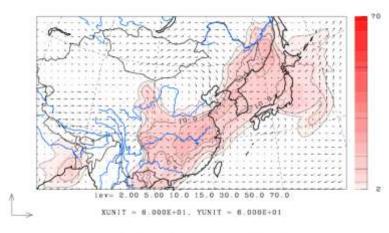



図 3-40 大阪管区気象台とアメダス生駒山の気温差と大阪管区気象台の風速




図 3-41 後方流跡線 (3 日前、観測地点高度:1500m、 NOAA HYSPLIT MODEL)

U-V&Sulfate m/s&ug/m3 JST 2013/11/02.21:00:00

◎九州大学応用力学研究所(RIAM)/国立環境研究所(NIES)

U-V&Sulfate m/s&ug/m3 JST 2013/11/03.21:00:00

◎九州大学応用力学研究所(RIAM)/国立環境研究所(NIES)

図 3-42 化学天気予報システム (CFORS) による 硫酸塩エアロゾルの分布予測図 (高度 0~1km 平均)

(上段:11月2日21時、下段:11月3日21時)

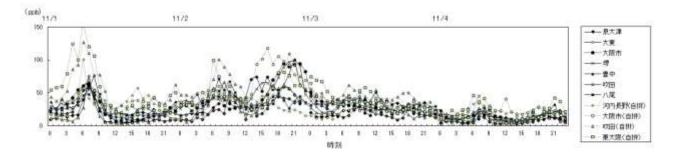


図 3-43 NOx 濃度の経時変化

d 冬季(高濃度日: 1月25日・30日・2月2日)

〇成分分析結果

 $PM_{2.5}$ 質量濃度および NO_3^- 、 SO_4^{2-} 、OC 濃度 $(1/22\sim2/4$ (再掲))を図 3-44 に、高濃度日 $(1/25\cdot1/30\cdot2/2)$ と高濃度日以外平均 $(1/25\cdot1/30\cdot2/2)$ を除く 1/22-2/4 平均)の NO_3^- 、 SO_4^{2-} および OC 濃度を図 3-45 に示す。

 $PM_{2.5}$ 質量濃度の高濃度イベントは 3 回みられた。まず、 $1/24\sim1/25$ にかけて上昇し、1/26 に一度下降した後、再度 1/30 にかけて上昇した。その後、1/31 に下降し、2/2 にかけて上昇した。1/25 は $31.4\sim46.9\,\mu\,g/m^3$ の濃度範囲となり 8 地点で $35\,\mu\,g/m^3$ を超過した。1/30 は 4 地点、2/2 は 3 地点で $35\,\mu\,g/m^3$ を超過した。

 $PM_{2.5}$ 質量濃度と同様の濃度変動を示した成分は NO_3 であった。図 3-46 に示すように 1/25 は $PM_{2.5}$ 質量濃度に占める NO_3 の割合が高く、全地点で平成 25 年度の調査期間最大値 $(6.8 \sim 14 \, \mu \, \text{g/m}^3)$ を示した。3 物質 $(NO_3$ 、 SO_4 および OC 共に高濃度日以外の平均値に比べて濃度が高かったが、 NO_3 は地点間の濃度差が大きかった。河内長野(自排)は高濃度日の 3 日間、 NO_3 濃度が最も低く、濃度の上昇が小さいあるいはみられなかった。また、泉大津では 1/25 は高濃度日以外の平均値に比べて濃度が非常に高かったが 2/2 は平均値と同レベルの濃度となるなど、 NO_3 濃度の高い地点は日によって異なっており、地域の発生源の影響を受けていることが示唆される。

図 3-47 に示すように、V、Fe および Cu は $PM_{2.5}$ 質量濃度と同様に 3 回の高濃度イベントがみられた。石油燃焼で発生するといわれている V は、1/25 は工業地域に近い泉大津、堺および大阪市(自排)で他の地点に比べて濃度が高かった。 NO_3 濃度の低かった河内長野(自排)では V、Fe および Cu 濃度も上昇がみられず他の地点に比べて低かった。これらの物質に関しても地域の発生源の影響を受けていることが示唆される。

○気象データ

高濃度日 (1/25、1/30、2/2) の大阪管区気象台 (標高 23m) とアメダス生駒山 (標高 626m) の気温差は 1/24 の 23 時~1/25 の 13 時、1/29 の 21 時~1/30 の 23 時および 2/2 の 21 時~2/3 の 11 時に 3.5℃を大きく下回っており、高濃度日は大気が安定しやすい気象条件であった。また、1/25 および 2/2 は風速も 1 日中、1.5m/s 以下になることが多く、風が弱かった。(図 3-50)

平均気温は、1/25 が 11.3° C、1/30 が 9.6° Cと 1 月下旬の平年値(5.5° C)に比べて高かった。 2/2 も 12.0° Cと 2 月上旬の平年値(5.7° C)に比べて高かった。(表 3-1)

後方流跡線によると、1/25 は気流が日本上空を循環していた。(図 3-48) 化学天気予報システム (CFORS) による硫酸塩エアロゾルの分布予測図でも後方流跡線と同様に、1/25 の大阪府域の硫酸塩エアロゾルの分布は大陸からの移流の分布ではなかった。(図 3-49)

〇大気汚染物質

N0x は朝方から午前中にかけて高濃度となり夜間は濃度が低くなる日変動を示すが、1/25、1/30 および 2/2 は夜間も濃度が上昇していた。(図 3-50)

V、Fe、Cu および NO_3 -濃度は地点間での濃度差が大きく、地域の発生源の影響を受けていることが示唆される。さらに、気温が冬季にしては高かったため、NOx から NO_3 -への反応も進み、 NO_3 -濃度が上昇したと考えられる。

以上より、 $PM_{2.5}$ 高濃度日 (1/25, 1/30 および 2/2) に $PM_{2.5}$ 質量濃度が上昇した主な原因は、3 日間とも<u>地域の発生源からの汚染物質の蓄積</u>であり、その影響は 1/25 が最も大きかったと推測された。

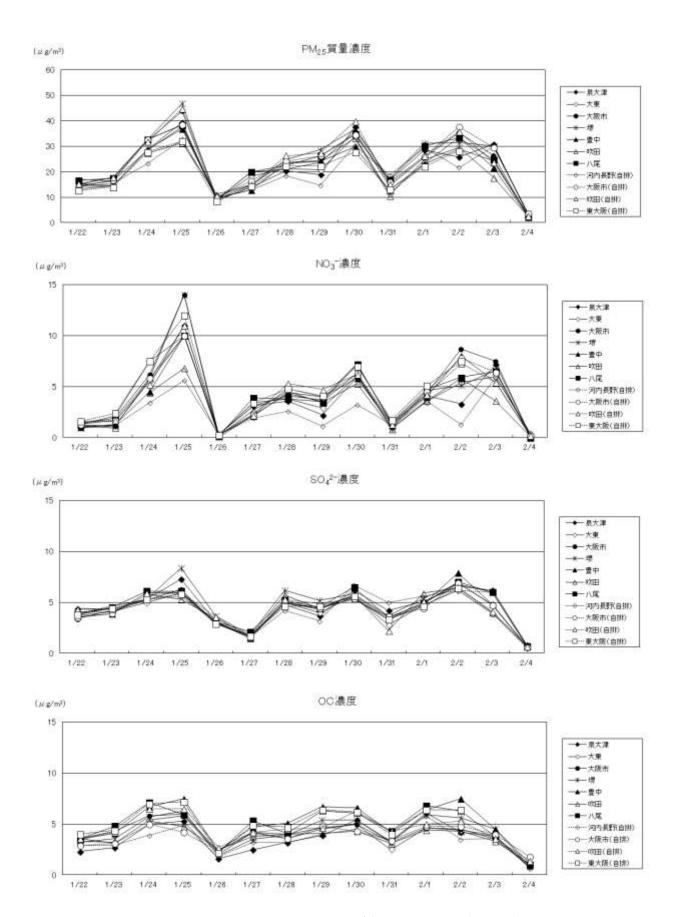


図 3-44 РМ_{2.5} 質量濃度および各成分濃度 (1/22~2/4)

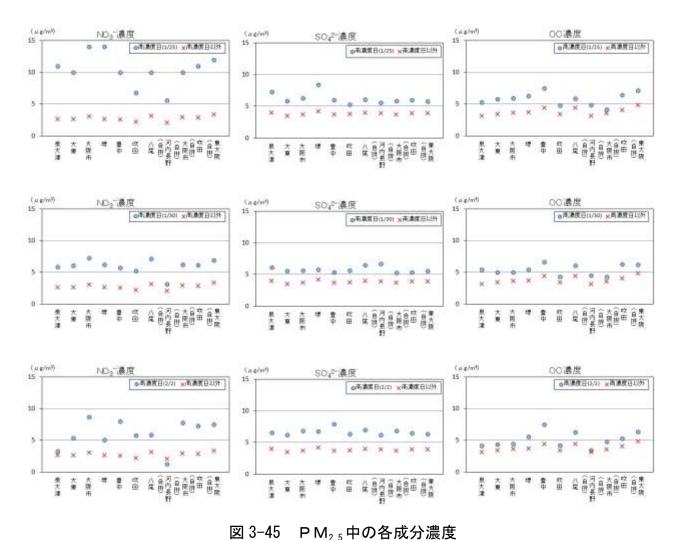


図 3-45 PM_{2.5}中の各成分濃度 (高濃度日:1/25・1/30・2/2、高濃度日以外:1/25・1/30・2/2 を除く1/22-2/4 平均)

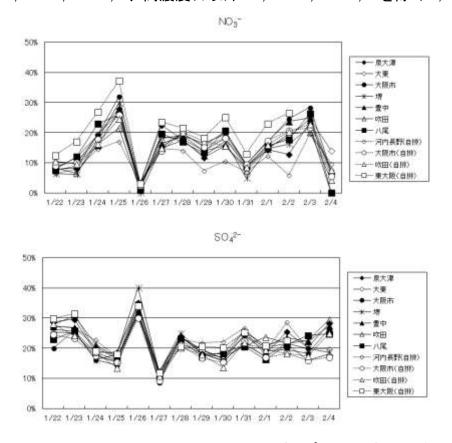


図 3-46 PM_{2.5} 質量濃度に占める NO₃-および SO₄²-濃度の割合 (1/22~2/4)

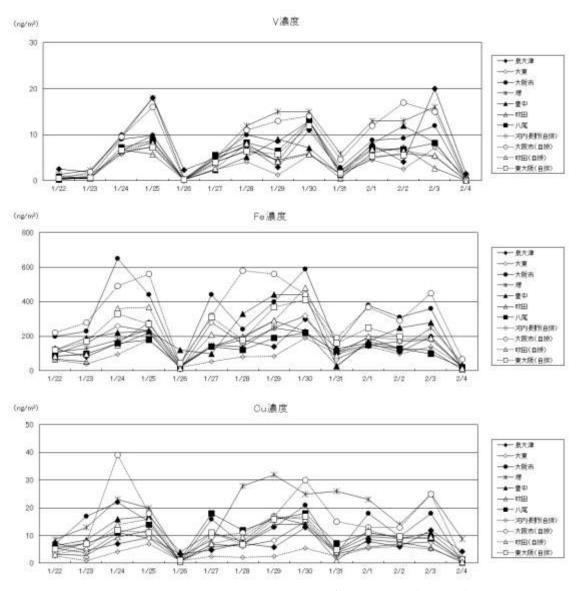


図 3-47 PM_{2.5}中の V、Fe および Cu 濃度(1/22~2/4)

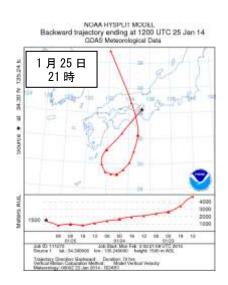



図 3-48 後方流跡線 (3 日前、観測地点高度: 1500m、 NOAA HYSPLIT MODEL)

U-V&Sulfate m/s&ug/m3

図 3-49 化学天気予報システム(CFORS)による 硫酸塩エアロゾルの分布予測図 (高度 0~1km 平均)

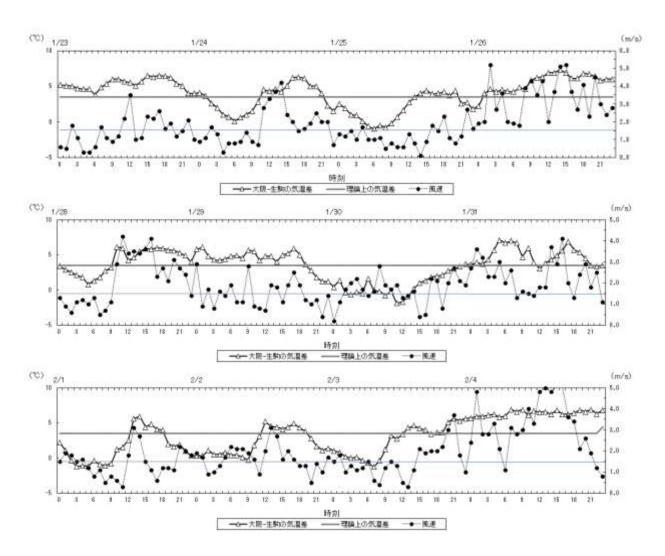


図 3-50 大阪管区気象台とアメダス生駒山の気温差と大阪管区気象台の風速

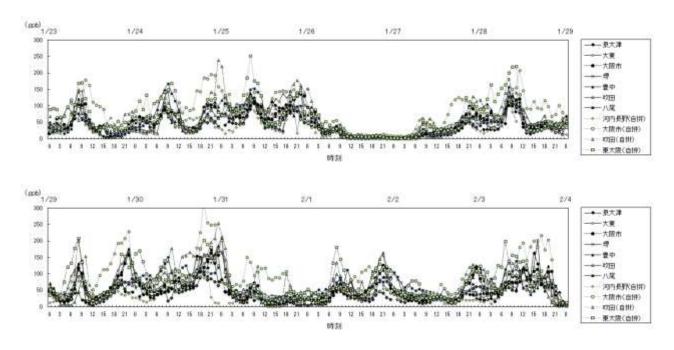


図 3-51 NOx 濃度の経時変化 (1/23~2/3)

(6) まとめ

平成 25 年度は、一般環境大気測定局 2 地点(泉大津、大東)、自動車排出ガス測定局 1 地点(河内長野(自排))の 3 地点で成分分析を実施した。政令市実施分も含めた 11 地点(一般環境大気測定局 7 地点、自動車排出ガス測定局 4 地点)の分析結果もあわせて解析し、その結果は以下のとおりであった。

〇年平均

- ・ $PM_{2.5}$ 質量濃度の年平均値は、堺で $21.8 \mu \, g/m^3$ と最も大きく、吹田で $18.4 \mu \, g/m^3$ と最も小さかった。
- ・主な成分 $(NO_3^-, SO_4^{2-}, NH_4^+, OC$ 及び EC) 濃度は地点によって大きな違いはなかった。
- ・ $PM_{2.5}$ 質量濃度に占める割合が最も大きかったのは SO_4^2 濃度で $28\sim33\%$ 、次に大きかったのは OC 濃度で $17\sim23\%$ であった。

〇季節平均

- ・PM₂₅質量濃度の季節平均値は、春季・秋季に比べ、夏季・冬季に高かった。
- ・NO₃ は全地点とも夏季に濃度が低く、冬季に濃度が高かった。冬季は他の季節に比べ地点間の濃度差が大きく、河内長野(自排)で濃度が低かった。
- ・ SO_4^2 -は全地点とも夏季に濃度が高く、他の季節の平均値の約2倍あった。夏季は他の季節に 比べ地点間の濃度差が大きく、泉大津・堺・豊中・八尾で高く、吹田・吹田(自排)で濃度が 低かった。
- ・0C及びEC濃度は季節変動があまりなく、地点によって変動が異なっていた。

〇日ごとの濃度

- ・夏季は $PM_{2.5}$ 質量濃度と SO_4^2 濃度の相関が0.9以上と高く、 SO_4^2 濃度は $PM_{2.5}$ 質量濃度と濃度変動が類似していた。秋季は00濃度と、冬季は NO_3 濃度との相関が高かった。一方、春季は主な成分濃度との相関係数が $0.43\sim0.67$ の範囲にあり、他の季節ほど明確に $PM_{2.5}$ 質量濃度と濃度変動が類似している成分がなかった。
- ・ $PM_{2.5}$ 質量濃度、 NO_3 -濃度および SO_4 ²-濃度の地点間の相関係数は 0.8 以上あり、11 地点での 濃度変動が類似していた。特に、 SO_4 ²-濃度は、地点間の相関係数が 0.9 以上と相関が高かった。一方、0C および EC 濃度は、前者に比べて相関係数が小さく、特に、河内長野(自排)は泉大津を除いて相関係数が $0.64\sim0.78$ と小さかった。
- ・一方、無機元素濃度は主な成分濃度ほど P M₂₅質量濃度との相関係数が大きくなかった。
- ・成分ごと(As、Se および Pb 以外)の地点間の濃度変動も主な成分のように類似していることはなく、地域での排出の影響を受けていると考えられる。
- ・石油燃焼の指標である V、Ni や鉄鋼工業の指標である Mn、Fe、Zn との相関係数が四季の中で冬季に最も大きかったことや、冬季は $PM_{2.5}$ 質量濃度と NO_3 との濃度変動が類似していたことから、特に冬季は地域汚染の影響が大きかったと考えられる。
- ・As、Se および Pb は他の成分に比べて地点間の濃度変動が類似しており、同じ要因の影響が大きいと考えられる。

〇高濃度日の状況

11 地点中 1 地点でも環境基準の日平均値である $35 \mu g/m^3$ を超過した日を $PM_{2.5}$ 高濃度日として、季節ごとに高濃度となった主な原因について考察した。

- ・春季は 5/21 が高濃度日となった。大陸からの気流が運ばれやすい気象条件であり、石炭燃焼により発生するといわれている Pb、As や SO_4^{2-} などの濃度が上昇した。よって、 $PM_{2.5}$ 質量濃度が上昇した主な原因は、東アジア規模の広域移流であったと推測された。
- ・夏季は 7/27、7/31 が高濃度日となった。大陸からの気流が運ばれやすい気象条件で、Pb、 As や SO_4^{2-} などの濃度が上昇した。(7/27>7/31) さらに、 $C_2O_4^{2-}$ が $PM_{2.5}$ 質量濃度と濃度変動が類似していたことから、 SO_4^{2-} などの濃度上昇は二次生成の促進の影響もあったと考えられる。(7/27<7/31) よって、 $PM_{2.5}$ 質量濃度が上昇した主な原因は、東アジア規模の広域移流と二次生成の促進であったと推測された。
- ・秋季は 11/2、11/3 が高濃度日となった。風が弱く大気が安定しやすい気象条件で、汚染物質が蓄積しやすい状況であった。11/2 は気温も高く 00 および 0.20 4^2 濃度が上昇したことから光化学反応による二次生成の促進があったと考えられる。一方、11/2 に濃度が高かった 11/2 には 11/3 は 11/3 に 11/3 は は 11/3 は は 11/3 は は 11/3 は は 11/3 は
- ・冬季は 1/25、 1/30、 2/2 が高濃度日となった。大気が安定しやすい気象条件で、汚染物質が蓄積しやすい状況であった。加えて、1/25 は風も弱く、汚染物質が拡散しにくい状況であった。実際に、高濃度日 3 日間のうち、 $PM_{2.5}$ 質量濃度が $35\,\mu\,g/m^3$ を超過した地点数は 1/25 が最も多く、 $N0_3$ も全地点で調査期間最大値を示した。V、Fe、Cu および $N0_3$ 濃度は地点間での濃度差が大きく、地域の発生源の影響を受けていることが示唆される。さらに、気温が冬季にしては高かったため、N0x から $N0_3$ への反応も進み、 $N0_3$ 濃度が上昇したと考えられる。よって、 $PM_{2.5}$ 質量濃度が上昇した主な原因は、3 日間とも地域の発生源からの汚染物質の蓄積であり、その影響は 1/25 が最も大きかったと推測された。

資料 分析結果

資料1-1 PM_{2.5}質量濃度及び各種成分濃度の分析結果

	平成25年度	基 禾								泉ス	大津市役所									定量下限值
	一一一一一	甘学		H25.5.8	H25.5.9	H25.5.10	H25.5.11	H25.5.12	H25.5.13	H25.5.14	H25.5.15	H25.5.16	H25.5.17	H25.5.18	H25.5.19	H25.5.20	H25.5.21	春季平均值	1火山 下风胆	左里 F 限1
	質量濃度(µ	g/m³)		10.9	23.4	15.3	28.2	18.4	21.0	27.0	12.7	18.9	17.3	9.8	6.7	11.7	34.4	18.3	-	-
		Cl⁻		0.046	0.068	0.085	0.26	0.019	0.035	0.042	0.022	0.021	0.022	0.025	0.064	0.023	0.015	0.053	0.0044	0.01
		NO₃⁻		0.86	1.0	1.6	5.8	0.36	1.5	3.1	0.56	0.23	1.1	0.28	0.42	0.85	0.65	1.3	0.019	0.00
		SO ₄ ²⁻		2.1	4.0	2.2	6.6	5.3	5.8	7.5	4.7	9.3	6.4	3.7	1.5	3.1	14	5.4	0.0071	0.02
	①イオン成分	C ₂ O ₄ ²⁻	**	0.12	0.21	0.18	0.19	0.22	0.25	0.31	0.098	0.19	0.26	0.14	0.073	0.17	0.32	0.20	0.0011	0.003
	(μ g/m³)	Na⁺		0.12	0.14	0.072	0.075	0.061	0.12	0.14	0.24	0.16	0.19	0.18	0.075	0.081	0.14	0.13	0.0091	0.030
	(μ g/ III /	NH₄⁺		1.1	1.6	1.3	4.1	2.1	2.5	3.4	1.7	3.4	2.4	1.4	0.74	1.4	5.0	2.3	0.0040	0.013
		K⁺		0.089	0.24	0.11	0.13	0.11	0.11	0.14	0.072	0.071	0.13	0.067	0.035	0.14	0.26	0.12	0.0047	0.01
		Mg²⁺		0.019	0.016	0.0092	<0.0091	0.012	0.019	0.018	0.031	0.029	0.028	0.025	<0.0091	<0.0091	0.036	0.018	0.0091	0.030
		Ca²⁺		0.10	0.12	0.044	0.038	0.069	0.068	0.067	0.073	0.082	0.13	0.078	0.023	0.048	0.14	0.077	0.0081	0.02
		Na		41	72	22	7.7	<6.0	52	72	150	74	66	75	<6.0	7.9	70	51	6.0	20
	<u> </u>	Al		12	30	16	10	47	31	31	21	47	31	19	<7.0	<7.0	160	33	7.0	23
	<u> </u>	Si	*		-	-	-	-	-	-	-		-	-	_	-	-		-	-
	_	K		72	210	110	100	91	92	120	62	70	110	51	18	120	250	110	0.34	
		Ca		5.4	11	2.6	3.4	9.5	6.7	5.9	5.4	5.8	6.6	4.3	0.94	4.1	19	6.5	0.59	
		Sc		<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	0.082	
		Ti	*	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	9.7	<4.9	4.9	
	-	V		5.5	9.8	2.5	12	7.8	12	19	9.7	2.8	8.4	2.8	4.1	6.0	7.1	7.8	0.017	
	-	Cr		<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	6.4	
各		<u>Mn</u>	*	8.7	14 200	7.9	13	6.9	7.7	9.7	4.6	4.5	6.7	3.0	2.0	9.8	16	8.2	0.29	
種	-	Fe		100 <0.17	<0.17	74 <0.17	200	94	100	110	62	64	120	46	34	110	210	110 <0.17	25	
成		Co	*		5.0		<0.17	<0.17	<0.17 5.0	<0.17 6.8	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	0.25 3.9		0.17	
分	-	Ni Cu	*	3.2 5.0	6.7	1.6 3.2	5.3 5.7	3.2 4.8	4.3	5.6	3.5 2.3	1.9 6.0	4.4 3.4	1.4 3.2	1.9 <2.2	3.5 4.5	5.0	3.6 4.3	1.2	
濃	-	Zn	Τ.	26	68	29	77	32	51	42	2.3	20	43	26	18	39	68	4.3	8.7	
度	②無機元素成分	As		0.25	1.6	0.37	6.0	1.2	1.0	0.84	0.26	0.71	0.52	0.16	<0.028	1.1	2.9	1.2	0.028	
	(ng/m³)	Se	*	0.20	2.2	0.37	1.8	0.48	1.0	0.95	0.28	0.71	0.66	<0.14	<0.028	0.64	2.5	0.82	0.028	
		Rb	*	0.23	1.2	0.20	0.67	0.47	0.39	0.49	0.25	0.37	0.46	0.14	0.082	0.53	1.4	0.50	0.023	
		Mo	*	0.80	2.0	1.0	1.7	0.92	0.89	1.4	0.45	0.70	0.45	0.36	0.51	1.4	1.4	1.0	0.020	0.06
		Sb		0.87	1.7	1.2	1.4	0.97	0.99	1.5	0.57	0.50	0.94	0.48	0.46	1.2	2.2	1.1	0.011	0.03
		Cs	*	<0.015	0.32	<0.015	0.17	0.021	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.19	0.055	0.015	
		Ba	*	0.090	9.4	<0.088	2.5	0.88	2.0	1.3	0.095	<0.088	2.1	<0.088	<0.088	2.9	3.8	1.8	0.088	
		La	*	0.052	0.18	0.10	0.24	0.078	0.17	0.33	0.075	0.054	0.14	0.062	0.042	0.11	0.35	0.14	0.011	0.03
		Се	*	0.093	0.29	0.26	0.49	0.15	0.31	0.61	0.14	0.10	0.29	0.17	0.095	0.25	0.66	0.28	0.011	0.03
		Sm	*	< 0.0093	< 0.0093	< 0.0093	< 0.0093	<0.0093	< 0.0093	<0.0093	<0.0093	<0.0093	< 0.0093	< 0.0093	<0.0093	< 0.0093	0.015	< 0.0093	0.0093	0.03
		Hf	*	<0.083	< 0.083	<0.083	< 0.083	<0.083	< 0.083	<0.083	<0.083	<0.083	< 0.083	<0.083	<0.083	< 0.083	<0.083	< 0.083	0.083	0.28
		W	*	0.18	0.51	0.58	0.66	0.22	0.24	0.39	0.077	0.18	0.21	0.11	0.20	0.28	0.30	0.30	0.0076	0.02
		Та	*	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	3.2	1
		Th	*	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Pb		6.9	16	6.2	18	15	14	11	5.4	9.5	8.4	5.1	3.4	11	30	11	0.46	
		Cd	**	0.059	0.42	0.098	0.54	0.13	0.14	0.10	<0.024	0.041	0.056	<0.024	<0.024	0.18	0.66	0.18	0.024	0.080
	③炭素成分※	OC		4.6	6.8	5.0	4.8	4.9	4.7	5.3	2.8	2.1	4.4	2.8	2.9	3.7	5.1	4.3	0.33	1.
		EC		1.2	2.0	1.4	2.0	1.3	1.5	1.7	0.66	0.68	1.3	0.55	0.66	1.1	1.6	1.3	0.0049	0.01
	(µ g/m³)	WSOC	**	2.6	4.1	3.1	2.9	3.5	3.1	3.6	1.7	1.6	2.8	2.0	1.4	2.7	4.1	2.8	0.028	0.094

EC:元素状炭素

WSOC:水溶性有機炭素

注1)平均値は、検出下限値未満の値を検出下限値の1/2として算出した。(炭素成分のフラクション値は、検出下限値未満の値をゼロとして、OC、EC値を算出した。)

注2) 表中の"-"は分析をしていないことを示す。(注3) 表中の"-"は分析をしていないことを示す。(注3) 表中の"*"は成分分析ガイドラインの実施推奨項目を示す。注4) 表中の"**"は成分分析ガイドラインにない項目を示す。

資料1-2 PM_{2.5}質量濃度及び各種成分濃度の分析結果

	亚芹亚东东	* *								7	大東市役所								検出下限値	ウラマのは
	平成25年度	哲学	•	H25.5.8	H25.5.9	H25.5.10	H25.5.11	H25.5.12	H25.5.13	H25.5.14	H25.5.15	H25.5.16	H25.5.17	H25.5.18	H25.5.19	H25.5.20	H25.5.21	春季平均值	快出下限胆	企里 下限 恒
	質量濃度(µ	g/m^3)		12.0	17.5	14.3	15.3	20.5	17.1	20.6	17.7	16.6	17.2	10.2	3.4	10.7	32.2	16.1	-	-
		Cl⁻		0.041	0.056	0.038	0.045	0.015	0.012	0.012	0.0086	0.0072	0.011	0.018	0.0085	0.0080	0.022	0.022	0.0044	0.015
		NO₃⁻		0.64	1.2	1.1	0.88	0.43	0.38	0.64	0.23	0.086	0.39	0.20	0.091	0.31	1.6	0.58	0.019	0.062
		SO ₄ 2-		1.9	3.6	2.6	2.1	5.9	4.6	7.7	7.6	6.0	6.1	4.2	1.1	2.6	12	4.9	0.0071	0.024
	①イオン成分	C ₂ O ₄ ²⁻	**	0.13	0.20	0.23	0.12	0.26	0.19	0.34	0.16	0.14	0.25	0.16	0.056	0.19	0.39	0.20	0.0011	0.0036
	(µ g/m³)	Na⁺		0.14	0.13	0.068	0.043	0.077	0.058	0.10	0.19	0.047	0.11	0.16	0.051	0.044	0.12	0.096	0.0091	0.030
	,, ,	NH₄⁺		0.90	1.6	1.3	1.1	2.3	1.9	2.8	2.5	2.2	2.2	1.5	0.43	1.1	4.3	1.9	0.0040	0.013
		K⁺		0.092	0.14	0.12	0.073	0.12	0.063	0.079	0.068	0.045	0.073	0.056	0.028	0.060	0.17	0.085	0.0047	0.016
		Mg ²⁺		0.014	0.020	<0.0091	<0.0091	0.014	0.012	0.019	0.028	<0.0091	0.015	0.025	<0.0091	<0.0091	0.029	0.014	0.0091	0.030
		Ca²⁺		0.081	0.16	0.038	0.018	0.060	0.077	0.085	0.062	0.052	0.059	0.060	0.020	0.032	0.10	0.065	0.0081	0.027
		Na Al		76 22	56 34	34 22	64 38	39 54	56 34	65 44	150 42	96 50	59 35	110 34	12 <7.0	6.4	64 110	63 38	6.0 7.0	20
		Si	*					- 54	- 34	<u>44</u> –	4Z -	- -	- 30		- < 7.0	-	-	- 38	7.0	
		K	Τ.	85	130	110	110	110	69	85	71	74	78	55	19	53	160	86	0.34	1.1
		Ca		5.2	7.6	3.0	19	6.5	6.4	7.2	5.8	6.2	4.9	3.5	<0.59	3.0	12	6.5	0.59	2.0
		Sc		<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	0.082	0.27
		Ti	*	<4.9	<4.9	<4.9	5.4	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	5.7	<4.9	4.9	16
		V		4.6	12	3.2	2.8	5.8	8.7	13	5.0	1.7	7.6	3.0	0.49	5.1	8.8	5.8	0.017	0.056
		Cr		<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	6.4	21
各		Mn	*	7.8	15	10	13	8.5	6.6	9.8	5.7	4.3	5.9	3.5	2.5	7.8	12	8.0	0.29	0.97
種		Fe		110	180	89	150	110	87	120	73	53	88	43	<25	100	170	99	25	83
成		Co	*	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	0.17	0.56
分		Ni		2.2	5.4	2.6	1.7	2.3	3.3	4.6	1.5	<1.2	3.3	<1.2	<1.2	3.6	3.9	2.6	1.2	4.1
濃		Cu	*	4.6	5.9	3.4	6.2	4.8	4.8	11	4.8	<2.2	2.7	<2.2	<2.2	3.7	4.7	4.3	2.2	7.3
度	②無機元素成分	Zn		28	57	28	90	47	27	33	30	17	23	13	18	32	52	35	8.7	29
	(ng/m³)	As		0.24	1.4 1.2	0.76	0.91	1.3 0.67	0.93	1.0	0.65	0.67	0.44	0.32	<0.028	0.68	2.3	0.83	0.028 0.14	0.092 0.45
	-	Se Rb	*	<0.14 0.21	0.66	0.61 0.33	0.38 0.37	0.67	0.80 0.34	0.80 0.38	0.62 0.31	0.37 0.35	0.45 0.29	0.17 0.19	<0.14 0.070	<0.14 0.16	2.0 0.83	0.36	0.14	0.43
	•	Mo	*	0.21	1.4	1.1	1.0	1.1	0.34	1.3	0.60	0.33	0.29	0.19	0.070	1.0	1.2	0.87	0.023	0.07
		Sb	Ψ.	1.4	2.6	1.8	1.7	1.2	1.1	1.7	0.67	0.17	1.4	0.68	0.13	1.5	1.8	1.3	0.020	0.036
		Cs	*	<0.015	0.16	<0.015	<0.015	0.022	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.11	0.027	0.011	0.051
		Ba	*	3.4	3.2	1.1	1.8	4.1	0.99	1.4	1.0	<0.088	<0.088	1.8	<0.088	2.8	4.7	1.9	0.088	0.29
		La	*	0.051	0.21	0.074	0.13	0.16	0.14	0.21	0.12	0.051	0.11	0.053	<0.011	0.049	0.26	0.12	0.011	0.036
		Се	*	0.13	0.40	0.16	0.32	0.24	0.31	0.41	0.33	0.14	0.24	0.15	<0.011	0.11	0.49	0.25	0.011	0.03
		Sm	*	<0.0093	< 0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	< 0.0093	<0.0093	<0.0093	0.0093	0.031
		Hf	*	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	0.083	0.28
		W	*	0.16	0.32	1.1	0.91	0.33	0.24	0.38	0.19	0.34	0.22	0.11	0.24	0.30	0.30	0.37	0.0076	0.025
		Та	*	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	3.2	11
		<u>Th</u>	*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
		Pb		6.7	14	12	42	18	10	11	8.1	9.1	8.0	4.6	2.9	6.9	22	13	0.46	1.5
		Cd	**	<0.024	0.35	0.15	0.13	0.16	0.080	0.099	0.034	0.043	0.060	<0.024	<0.024	0.082	0.44	0.12	0.024	0.080
	③炭素成分※	00		4.7	5.8	5.1	3.5	5.6	4.0 1.3	4.9	2.7	1.8	3.9	2.8	1.7	4.1 1.2	5.4	4.0	0.33	1.1
	$(\mu g/m^3)$	EC		1.3	1.7	1.4	1.2	1.4		1.3	0.64	0.44	1.1	0.57	0.30		2.0	1.1	0.0049	0.016
×00	 	WSOC	**	2.7	3.8	3.3	2.1	3.9	2.6	3.6	2.1	1.2	2.7	2.1	1.3	2.8	4.1	2.7	0.028	0.094

EC:元素状炭素

WSOC:水溶性有機炭素

注1)平均値は、検出下限値未満の値を検出下限値の1/2として算出した。(炭素成分のフラクション値は、検出下限値未満の値をゼロとして、OC、EC値を算出した。)

注2) 表中の"-"は分析をしていないことを示す。(注3) 表中の"*"は成分分析ガイドラインの実施推奨項目を示す。 注4) 表中の"**"は成分分析ガイドラインにない項目を示す。

資料1-3 PM_{2.5}質量濃度及び各種成分濃度の分析結果

	平成25年度									外	環河内長野	ř							検出下限値	定量下限値
	十八八二十尺	中子		H25.5.8	H25.5.9	H25.5.10	H25.5.11	H25.5.12	H25.5.13	H25.5.14	H25.5.15	H25.5.16	H25.5.17	H25.5.18	H25.5.19	H25.5.20	H25.5.21	春季平均值	次出「民間	人主 队但
	質量濃度(µ	g/m^3)		10.4	17.3	14.5	19.0	15.7	20.4	26.0	13.0	19.0	17.6	11.9	7.1	10.7	34.4	16.9	-	-
		Cl⁻		0.045	0.042	0.10	0.18	ZZZ	0.015	0.039	0.017	0.013	0.016	0.021	0.019	0.015	0.024	0.042	0.0044	0.015
		NO₃⁻		0.46	0.67	1.5	3.4	ZZZ	0.51	1.6	0.39	0.23	0.37	0.25	0.34	0.37	0.62	0.82	0.019	0.062
		SO ₄ ²⁻		1.8	3.1	1.7	4.5	ZZZ	6.0	7.6	4.9	9.5	6.2	4.1	1.3	2.9	15	5.3	0.0071	0.024
	①イオン成分	C ₂ O ₄ ²⁻	**	0.12	0.20	0.13	0.14	ZZZ	0.26	0.37	0.14	0.21	0.26	0.15	0.061	0.16	0.31	0.19	0.0011	0.0036
	(µ g/m³)	Na⁺		0.12	0.072	0.059	0.035	ZZZ	0.090	0.10	0.18	0.12	0.10	0.14	0.047	0.029	0.14	0.095	0.0091	0.030
	(p. 8, ,	NH₄⁺		0.74	1.3	1.1	2.6	ZZZ	2.3	3.1	1.7	3.5	2.3	1.5	0.61	1.2	5.1	2.1	0.0040	0.013
		K⁺		0.14	0.21	0.099	0.074	ZZZ	0.11	0.11	0.063	0.068	0.086	0.085	0.025	0.047	0.23	0.10	0.0047	0.016
		Mg ²⁺		0.017	0.013	<0.0091	<0.0091	ZZZ	0.015	0.015	0.024	0.020	0.017	0.019	<0.0091	<0.0091	0.048	0.016	0.0091	0.030
		<u>Ca²⁺</u>		0.079	0.12	0.039	0.021	ZZZ	0.070	0.063	0.059	0.068	0.066	0.061	0.024	0.032	0.22	0.071	0.0081	0.027
		Na Na		67 14	41 34	46	8.5 20	26 64	67 43	100 64	160 27	98 52	80	100 21	22 <7.0	<6.0	51 150	62 40	6.0 7.0	20
		Al Si	*	- 14	34 	18		- 64	43	- 64	- 21	52 -	38		< 7.0	14	150	40	- 7.0	_ 23
		K Si	*	120	210	130	89	100	120	130	71	83	88	83	20	37	190	110	0.34	
	-	Ca		4.9	8.7	3.0	3.5	17	6.3	11	5.2	6.3	6.2	4.4	4.0	2.0	18	7.2	0.54	
	•	Sc		<0.082	<0.082	<0.082	<0.082	0.094	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	0.12	<0.082	<0.082	0.082	0.27
	•	Ti	*	<4.9	<4.9	<4.9	<4.9	5.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	12	<4.9	4.9	
	•	V		1.7	3.7	2.0	4.4	3.6	7.9	13	5.0	1.8	2.4	2.5	0.53	2.0	3.5	3.9	0.017	0.056
		Cr		<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	6.4	
各		Mn	*	6.1	9.4	12	9.6	6.7	10	11	4.7	4.7	5.4	2.5	0.53	4.4	9.5	6.9	0.29	
種		Fe		84	140	67	120	81	120	160	57	63	79	50	27	71	190	94	25	
成		Со	*	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	< 0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	0.17	0.56
分		Ni		1.3	1.8	<1.2	1.9	1.3	4.2	7.9	1.5	<1.2	1.3	<1.2	<1.2	1.6	2.3	2.0	1.2	
濃		Cu	*	3.3	4.6	2.3	5.0	3.1	4.3	6.0	2.7	3.2	4.8	3.5	<2.2	5.2	6.6	4.0	2.2	
度	②無機元素成分	Zn		21	42	33	39	40	53	48	30	21	23	14	<8.7	18	43	31	8.7	
反	(ng/m³)	As		0.41	1.0	0.37	2.2	1.1	1.5	1.2	0.35	0.79	0.48	0.21	<0.028	0.77	2.1	0.89	0.028	
	(1.18) /	Se	*	0.25	1.6	0.24	1.0	0.53	1.6	1.6	0.50	0.34	0.46	<0.14	<0.14	0.31	1.5	0.72	0.14	
		Rb	*	0.34	0.99	0.29	0.46	0.48	0.48	0.50	0.24	0.37	0.30	0.21	0.067	0.17	1.0	0.42	0.023	0.077
		Mo	*	0.58	1.1	0.53	0.92	0.54	1.2	1.3	0.40	0.29	0.61	0.39	0.14	0.50	0.71	0.66	0.020	0.066
	-	Sb	-t-	0.68 <0.015	1.6 0.30	1.3 <0.015	1.2 0.075	0.89	1.3 <0.015	1.5 <0.015	0.69	0.64 <0.015	0.88 <0.015	0.99	0.70	0.54 <0.015	0.89	0.99	0.011	0.036 0.051
	-	<u>Cs</u> Ba	*	0.23	1.6	<0.015	<0.075	<0.015 0.49	0.79	1.6	<0.015 0.13	<0.015	2.2	<0.015 1.4	<0.015 0.79	1.9	0.12 2.8	0.041 1.0	0.015 0.088	0.051
	-	<u>Ба</u> La	*	<0.011	0.11	0.093	0.038	0.49	0.79	0.26	0.13	0.022	0.041	0.024	<0.011	<0.011	0.12	0.074	0.088	0.036
	•	Ce	*	0.042	0.17	0.033	0.038	0.003	0.18	0.48	0.003	0.022	0.041	0.024	0.074	0.034	0.12	0.074	0.011	0.037
	•	Sm	*	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	0.0093	0.037
	•	Hf	*	<0.083	<0.083	<0.083	<0.083	1.3	<0.000	<0.083	<0.083	<0.083	<0.083	0.16	<0.083	0.18	<0.083	0.15	0.083	0.28
		W	*	0.26	0.34	0.36	0.42	0.12	0.25	0.48	0.17	0.16	0.14	0.069	0.021	0.15	0.17	0.22	0.0076	
		Ta	*	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	3.2	
		Th	*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Pb		5.3	13	6.0	9.6	12	13	12	5.4	9.0	7.2	4.8	1.4	7.8	23	9.3	0.46	1.5
		Cd	**	0.048	0.38	0.047	0.23	0.14	0.20	0.19	<0.024	0.064	0.036	<0.024	<0.024	0.10	0.40	0.13	0.024	0.080
	③炭素成分※	OC		4.6	6.1	4.8	3.5	ZZZ	5.2	6.6	3.4	2.1	4.5	3.6	2.0	3.5	4.7	4.2	0.33	1.1
		EC		1.4	2.0	1.8	1.5	ZZZ	1.9	2.4	1.1	0.82	1.5	0.97	0.62	1.4	2.0	1.5	0.0049	0.016
	(μ g/m³) :有機炭素	WSOC	**	2.9	4.5	2.7	2.4	ZZZ	3.8	5.0	2.2	1.7	3.4	2.4	1.4	2.5	3.7	3.0	0.028	0.094

EC:元素状炭素

WSOC:水溶性有機炭素

注1)平均値は、検出下限値未満の値を検出下限値の1/2として算出した。(炭素成分のフラクション値は、検出下限値未満の値をゼロとして、OC、EC値を算出した。)

注2)表中の"-"は分析をしていないことを示す。(注3)表中の"*"は成分分析ガイドラインの実施推奨項目を示す。

注4)表中の"**"は成分分析ガイドラインにない項目を示す。

注5)表中の"ZZZ"は欠測であることを示す。

資料2-1 PM_{2.5}質量濃度及び各種成分濃度の分析結果

	平成25年度	百禾								泉	大津市役所								埃山下阻值	定量下限値
	十八八八十八八八八八八八八八八八八八八八八八八八八八八八八八八八八八八八八八	支子 ————————————————————————————————————		H25.7.24	H25.7.25	H25.7.26	H25.7.27	H25.7.28	H25.7.29	H25.7.30	H25.7.31	H25.8.1	H25.8.2	H25.8.3	H25.8.4	H25.8.5	H25.8.6	夏季平均值	快山 下风 ॥	企里
	質量濃度(µ	g/m³)		27.1	32.2	33.6	40.6	23.9	25.0	25.3	35.9	24.4	13.1	11.9	17.2	11.9	24.2	24.7	-	-
		Cl⁻		0.014	0.038	0.0063	0.0098	0.014	0.019	0.019	0.013	0.011	0.0052	0.016	0.017	0.011	0.0058	0.014	0.0044	0.015
	_	NO₃⁻		0.23	0.20	0.11	0.16	0.26	0.33	0.44	0.22	0.095	0.066	0.17	0.21	0.14	0.12	0.20	0.019	0.062
		SO ₄ ²⁻		11	12	15	20	9.7	8.6	10	13	11	6.2	4.9	7.9	5.1	9.2	10	0.0071	0.024
	①イオン成分	-2-4	**	0.36	0.32	0.34	0.37	0.26	0.28	0.33	0.41	0.33	0.12	0.15	0.20	0.13	0.31	0.28	0.0011	0.0036
	(µ g/m³)	Na⁺		0.15	0.29	0.23	0.19	0.092	0.19	0.24	0.19	0.20	0.084	0.098	0.16	0.16	0.10	0.17	0.0091	0.030
		NH₄⁺		4.0	4.4	5.3	6.9	3.7	3.2	3.8	4.6	3.9	2.5	1.9	2.9	1.9	3.3	3.7	0.0040	0.013
		K⁺		0.14	0.23	0.22	0.34	0.27	0.28	0.15	0.19	0.17	0.079	0.16	0.12	0.080	0.14	0.18	0.0047	0.016
	-	Mg ²⁺		0.022	0.037	0.032	0.032	0.031	0.044	0.035	0.023	0.03	0.012	0.028	0.029	0.022	0.020	0.028	0.0091	0.030
		Ca²+	-	0.12	0.16 240	0.10 240	0.15	0.057	0.065	0.13	0.065	0.17	0.060	0.20	0.14	0.076	0.096	0.11 150	0.0081	0.027
1		Na Al		140 22	42	52 52	180 42	82 47	180 29	250 52	220 41	180 33	63 17	27 18	84 11	130 17	74 21	32	6.0 7.0	20
	 		*	-	4Z -	- -	4Z -	-		- 32	- 41		-	-	- 11	-	-	-	- 7.0	
		K	r	120	200	200	290	240	230	140	210	150	69	130	97	66	120	160	0.34	1.1
		Ca	-	4.8	7.6	9.1	7.8	9.3	8.7	11	8.6	7.4	3.8	4.6	8.6	2.9	3.2	7.0	0.59	
	Ī	Sc		<0.082	<0.082	0.11	<0.082	<0.082	<0.082	0.12	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	0.082	0.27
	<u> </u>		*	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	5.7	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	4.9	16
		V		19	7.4	12	9.6	4.7	9.5	8.4	9.7	9.4	4.3	2.1	5.2	4.0	4.7	7.9	0.017	0.056
		Cr		<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	6.4	
各		Mn	*	6.3	11	9.6	13	6.1	8.7	12	11	9.1	4.8	3.7	3.8	3.9	10	8.1	0.29	
種		Fe		73	130	110	110	90	120	120	140	95	44	25	160	56	94	98	25	
成			*	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	0.17	0.56
分		Ni		6.6	6.9	4.5	2.3	<1.2	3.6	3.7	3.5	2.8	<1.2	<1.2	1.4	2.8	<1.2	2.9	1.2	
濃			*	5.8	2.8	3.4	3.2	5.7	5.9	4.4	4.2	5.5	6.1	2.6	3.8	2.8	6.0	4.4	2.2	7.3
度	②無機元素成分	Zn		33	48	49	54	41	74	79	82	63	27	22	21	15	49	47	8.7	29
	(ng/m³)	As		0.93	1.5	2.4	4.1	2.2	1.6	2.1	3.4	2.4	0.86	0.70	1.1	0.44	2.4	1.9	0.028	0.092
			*	1.3 0.31	1.9 0.71	2.0 0.94	2.8 1.5	2.1 0.72	1.6 0.55	1.1 0.58	2.8 1.0	1.7 0.70	0.78 0.31	0.69 0.25	0.92 0.25	0.51 0.19	1.8 0.54	1.6 0.61	0.14 0.023	0.45 0.077
			*	8.7	2.3	1.2	0.80	1.1	3.0	1.5	2.3	1.1	0.51	0.25	0.23	0.19	0.98	1.8	0.023	0.077
		Sb	Τ	2.7	1.3	1.0	1.3	4.6	1.7	1.3	1.5	1.1	0.58	2.4	0.73	0.93	1.4	1.5	0.020	0.036
	 		*	0.037	0.087	0.19	0.35	0.21	0.072	0.14	0.28	0.18	0.061	0.041	0.061	0.024	0.26	0.14	0.015	
	-		*	2.9	5.9	4.3	6.6	11	13	3.3	5.2	6.0	2.2	7.5	5.9	5.1	8.2	6.2	0.088	0.29
		La	*	0.20	0.23	0.22	0.17	0.28	0.23	0.25	0.23	0.10	0.044	<0.011	0.11	0.081	0.047	0.16	0.011	0.036
		Се	*	0.24	0.30	0.26	0.17	0.40	0.43	0.40	0.26	0.025	< 0.011	<0.011	0.13	0.097	< 0.011	0.19	0.011	0.037
		Sm	*	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	0.0093	0.031
		Hf	*	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	0.083	0.28
	<u> </u>		*	<0.0076	<0.0076	0.069	<0.0076	<0.0076	0.17	0.044	0.29	0.072	<0.0076	<0.0076	<0.0076	<0.0076	<0.0076	0.049	0.0076	0.025
			*	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	3.2	11
	<u> </u>		*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	<u> </u>	Pb	_	5.6	15	20	33	27	14	17	25	19	10	7.1	8.3	3.6	17	16	0.46	1.5
			**	0.26	2.2	0.92	0.79	0.55	0.82	0.45	0.88	0.55	0.24	0.17	0.31	0.17	0.47	0.63	0.024	0.080
	③炭素成分※	00	_	4.6	5.4	4.8	4.9	3.7	4.7	3.8	4.8	3.8	2.7	3.2	3.3	3.2	3.8	4.1	0.33	
	(µ g/m³)	EC		1.4	1.5	1.3	1.4	1.0	2.0	1.2	1.7	1.2	0.62	0.71	0.94	0.73	1.2	1.2	0.0049	0.016
\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	 有機炭素	WSOC	**	2.7	3.2	2.3	2.6	1.9	2.5	2.1	2.4	2.2	0.81	1.3	1.8	1.2	2.5	2.1	0.028	0.094

EC:元素状炭素

WSOC:水溶性有機炭素

注1)平均値は、検出下限値未満の値を検出下限値の1/2として算出した。(炭素成分のフラクション値は、検出下限値未満の値をゼロとして、OC、EC値を算出した。)

注2)表中の"-"は分析をしていないことを示す。(注3)表中の"*"は成分分析ガイドラインの実施推奨項目を示す。

注4)表中の"**"は成分分析ガイドラインにない項目を示す。

資料2-2 PM_{2.5}質量濃度及び各種成分濃度の分析結果

	平成25年度	百禾								J	大東市役所								 	定量下限値
	平成20年度			H25.7.24	H25.7.25	H25.7.26	H25.7.27	H25.7.28	H25.7.29	H25.7.30	H25.7.31	H25.8.1	H25.8.2	H25.8.3	H25.8.4	H25.8.5	H25.8.6	夏季平均值	快山下限旭	企里 下限恒
	質量濃度(µ	g/m^3)		22.3	28.1	31.6	37.7	22.9	23.3	27.5	34.2	20.0	7.9	7.8	17.8	10.8	23.3	22.5	-	-
		Cl⁻		0.0077	0.0096	0.011	0.0097	0.017	0.012	0.020	0.021	0.0048	0.0077	0.0054	0.0070	0.0078	0.0066	0.011	0.0044	0.01
		NO₃⁻		0.12	0.14	0.12	0.19	0.54	0.22	0.51	1.0	0.095	0.056	0.067	0.072	0.097	0.13	0.24	0.019	0.062
		SO ₄ 2-		8.9	12	15	18	9.4	8.6	12	14	9.1	3.6	2.8	7.4	3.7	8.8	9.5	0.0071	0.024
	①イオン成分	C ₂ O ₄ ²⁻	**	0.32	0.30	0.33	0.32	0.25	0.27	0.31	0.44	0.27	0.066	0.090	0.22	0.14	0.31	0.26	0.0011	0.0036
	(µ g/m³)	Na⁺		0.10	0.17	0.19	0.16	0.091	0.18	0.17	0.15	0.11	0.050	0.045	0.094	0.058	0.094	0.12	0.0091	0.030
	,, ,	NH₄⁺		3.4	4.4	5.3	6.4	3.7	3.2	4.6	5.2	3.4	1.5	1.2	2.9	1.5	3.3	3.6	0.0040	0.013
		K⁺		0.086	0.19	0.16	0.29	0.21	0.15	0.13	0.21	0.10	0.045	0.11	0.15	0.053	0.13	0.14	0.0047	0.016
		Mg ²⁺		0.016	0.030	0.025	0.030	0.021	0.024	0.023	0.023	0.017	0.030	0.014	0.022	0.011	0.017	0.022	0.0091	0.030
		Ca ²⁺		0.045	0.051	0.054	0.060	0.041	0.040	0.049	0.048	0.032	0.024	0.028	0.037	0.045	0.047	0.043	0.0081	0.02
		Na Al		81 16	160 31	120 24	140 40	73 22	110 15	130 19	120 31	87 14	15 <7.0	20 14	81 16	19 <7.0	75 20	88 19	6.0 7.0	20
		Si	*	- 10	-		40 -	-	- 15	-	- -	- 14	- < 7.0	- 14	-	- < 7.0	-	-	7.0	
		K	т	88	180	140	260	180	110	110	190	97	29	89	130	39	120	130	0.34	1.1
		Ca		3.5	6.6	3.4	7.5	4.4	3.3	3.0	11	2.2	<0.59	3.0	4.1	<0.59	3.6	4.0	0.59	2.0
		Sc		<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	0.082	0.27
		Ti	*	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	4.9	16
		V		12	8.7	8.9	7.3	6.3	11	6.1	8.4	3.8	0.86	0.67	4.5	1.5	3.3	6.0	0.017	0.056
		Cr		<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	6.4	21
各		Mn	*	6.8	7.5	8.3	16	6.3	8.7	7.8	13	9.0	1.4	4.1	4.2	4.6	10	7.7	0.29	0.97
種		Fe		62	59	63	140	88	100	73	140	81	<25	31	44	51	110	75	25	83
成		Co	*	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	0.17	0.56
分		Ni		4.3	2.3	1.7	2.4	1.6	3.0	2.3	3.6	<1.2	<1.2	<1.2	1.9	1.6	3.2	2.1	1.2	4.1
濃		Cu	*	3.6	5.8	5.1	6.8	5.5	4.9	3.6	12	3.3	<2.2	<2.2	6.7	4.4	4.8	4.9	2.2	7.3
度	②無機元素成分	Zn		24	39	46	94	46	46	48	83	47	<8.7	23	29	18	54	43	8.7	29
	(ng/m³)	As	*	0.98	1.7 1.5	2.6	4.2	2.2	1.4 1.5	3.2	3.1	1.8	0.38	0.43	1.3	0.47	2.1 1.9	1.8	0.028	0.092 0.45
	-	Se Rb	*	1.1 0.18	0.44	2.0 0.70	2.9 1.3	1.9 0.71	0.44	2.1 0.54	2.4 0.72	1.7 0.42	1.5 0.13	0.79 0.13	1.0 0.28	0.66 0.10	0.41	1.6 0.46	0.14	0.43
	•	Mo	*	3.7	0.44	0.70	1.2	1.0	2.1	0.66	1.9	0.42	0.066	0.15	0.28	0.10	0.41	1.1	0.023	0.07
		Sb	т	1.3	2.9	1.1	1.7	1.2	0.96	1.7	2.4	3.2	0.26	0.13	0.63	0.65	2.3	1.5	0.020	0.036
		Cs	*	0.029	0.081	0.17	0.35	0.22	0.12	0.14	0.19	0.10	0.021	0.019	0.068	<0.015	0.10	0.12	0.011	0.051
		Ba	*	3.1	8.6	1.6	7.2	6.3	2.9	1.7	6.9	2.1	0.62	4.7	5.4	1.1	3.6	4.0	0.088	0.29
		La	*	0.14	0.10	0.10	0.15	0.14	0.13	0.086	0.33	0.043	0.012	<0.011	0.051	0.016	0.046	0.096	0.011	0.036
		Се	*	0.16	0.099	0.087	0.14	0.13	0.15	0.14	0.63	0.013	<0.011	<0.011	0.023	<0.011	0.032	0.12	0.011	0.03
		Sm	*	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	0.0093	0.031
		Hf	*	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	0.083	0.28
		W	*	<0.0076	0.020	<0.0076	<0.0076	<0.0076	0.17	<0.0076	0.18	<0.0076	<0.0076	<0.0076	<0.0076	<0.0076	<0.0076	0.029	0.0076	0.025
		Та	*	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	3.2	11
		<u>Th</u>	*	-	-	-	-	-	-	-	-	-	-	-	-	-	- 47	-	-	
		Pb		5.8	16	19	35	18	14	18	23	17	3.8	4.9	9.3	6.0	17	15	0.46	1.5
		Cd	**	0.27	0.38	0.70	0.87	0.55	0.52	0.48	0.66	0.36	0.072	0.081	0.40	0.17	0.46	0.43	0.024	0.080
	③炭素成分※	00		4.4 1.4	5.2	4.7	4.3	4.1	4.6	4.0 1.5	5.7	3.8	2.1 0.31	3.1	3.9	3.6 0.93	4.7 1.5	4.2	0.33	1.1
	$(\mu g/m^3)$	EC			1.8	1.5	1.5	1.1	2.0		2.3	1.1		0.50	0.99			1.3	0.0049	0.016
<u>~~~</u>	 	WSOC	**	2.6	2.8	2.5	2.6	1.9	2.4	2.3	3.0	1.9	0.73	1.1	2.1	1.6	2.7	2.2	0.028	0.094

EC:元素状炭素

WSOC:水溶性有機炭素

注1)平均値は、検出下限値未満の値を検出下限値の1/2として算出した。(炭素成分のフラクション値は、検出下限値未満の値をゼロとして、OC、EC値を算出した。)

注2) 表中の"-"は分析をしていないことを示す。(注3) 表中の"*"は成分分析ガイドラインの実施推奨項目を示す。 注4) 表中の"**"は成分分析ガイドラインにない項目を示す。

資料2-3 PM_{2.5}質量濃度及び各種成分濃度の分析結果

	亚芹尔左连	百千								外	環河内長野	7							検出下限値	ウミエ四は
	平成25年度	夏 李		H25.7.24	H25.7.25	H25.7.26	H25.7.27	H25.7.28	H25.7.29	H25.7.30	H25.7.31	H25.8.1	H25.8.2	H25.8.3	H25.8.4	H25.8.5	H25.8.6	夏季平均值	快出下限個	定量下限值
	質量濃度(µ	g/m^3)		20.8	27.6	33.3	35.8	20.9	22.2	24.8	29.0	22.5	12.0	13.2	16.2	12.4	21.7	22.3	-	-
		Cl⁻		0.0064	0.016	0.019	0.013	0.018	0.044	0.026	0.019	0.024	0.013	0.017	0.0093	0.011	0.013	0.018	0.0044	0.015
		NO₃⁻		0.14	0.13	0.37	0.31	0.17	0.46	0.27	0.13	0.11	0.077	0.13	0.078	0.070	0.15	0.19	0.019	0.062
		SO ₄ ²⁻		7.3	12	14	17	9.0	7.8	10	12	9.6	5.4	4.5	6.9	3.5	8.5	9.1	0.0071	0.024
	①イオン成分	C ₂ O ₄ ²⁻	**	0.27	0.25	0.32	0.31	0.23	0.26	0.31	0.36	0.32	0.11	0.17	0.19	0.12	0.29	0.25	0.0011	0.0036
	(µ g/m³)	Na⁺		0.071	0.14	0.12	0.11	0.063	0.12	0.16	0.13	0.16	0.054	0.046	0.062	0.045	0.076	0.097	0.0091	0.030
	,, 5	NH₄⁺		3.0	4.4	5.3	6.2	3.5	3.1	3.8	4.5	3.6	2.2	1.9	2.7	1.5	3.3	3.5	0.0040	0.013
		K⁺		0.095	0.13	0.17	0.23	0.13	0.14	0.12	0.13	0.15	0.067	0.15	0.080	0.050	0.11	0.13	0.0047	0.016
		Mg ²⁺		0.013	0.022	0.021	0.022	0.014	0.018	0.027	0.019	0.019	0.022	0.016	0.012	0.014	0.010	0.018	0.0091	0.030
		Ca²⁺		0.049	0.059	0.045	0.047	0.034	0.046	0.051	0.055	0.048	0.036	0.032	0.030	0.039	0.035	0.043	0.0081	0.027
		Na Al		73 27	140 40	130 47	120 39	52 20	100 31	150 29	130 32	91 17	36 9.8	8.4 8.5	47 15	16 11	38 25	81 25	6.0 7.0	20 23
		Si	*	-	-	-	-		- -		-	-	9.0	6.0 _	-	-	- 23	- 23	- 1.0	
		K	T	120	150	200	250	140	150	130	150	150	75	110	86	55	110	130	0.34	1.1
	•	Ca		5.0	8.5	6.9	7.8	6.1	4.7	6.0	6.0	4.4	1.5	<0.59	1.6	1.4	2.7	4.5	0.59	2.0
		Sc		<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	<0.082	0.082	0.27
		Ti	*	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	4.9	16
		V		8.3	4.5	7.9	6.2	3.8	4.1	6.1	5.0	4.2	2.7	1.6	3.4	1.6	3.6	4.5	0.017	0.056
		Cr		<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	<6.4	6.4	21
各		Mn	*	5.6	7.6	10	10	5.2	9.5	10	9.2	7.2	3.8	3.4	4.5	3.4	8.2	7.0	0.29	0.97
種		Fe		69	70	86	97	59	100	86	92	60	40	34	50	<25	100	68	25	83
成		Co	*	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	0.17	0.56
分		Ni		3.9	1.3	2.2	1.4	<1.2	3.2	1.4	<1.2	<1.2	<1.2	<1.2	2.2	<1.2	6.5	1.8	1.2	4.1
濃		Cu	*	3.3	5.9	4.8	5.0	2.9	4.1	3.3	5.5	4.0	<2.2	<2.2	<2.2	<2.2	4.5	3.4	2.2	7.3
度	②無機元素成分	Zn		22	39	60	63	41	48	64	62	42	22	16	19	15	37	39	8.7	29
	(ng/m³)	As		1.1	2.0	3.4	4.0	2.4	2.1	2.9	3.1	2.2	0.76	0.64	1.2	0.48	2.4	2.0	0.028	0.092
		Se Rb	*	1.0 0.15	1.7 0.56	2.4 0.82	2.9 1.2	1.5 0.59	1.3 0.42	1.8 0.61	2.1 0.75	1.5 0.45	1.1 0.25	0.49 0.12	0.90 0.25	0.28 0.083	1.6 0.46	1.5 0.48	0.14 0.023	0.45 0.077
	•	Mo	*	1.3	0.64	0.82	0.77	0.39	0.42	1.0	0.75	0.43	0.25	0.12	0.25	0.063	0.46	0.48	0.023	0.077
		Sb	т	0.95	1.2	1.5	1.4	1.0	1.3	1.2	1.5	1.2	0.40	0.97	0.33	0.68	1.2	1.1	0.020	0.000
	•	Cs	*	<0.015	0.067	0.13	0.22	0.12	0.024	0.12	0.18	0.07	<0.015	<0.015	0.036	<0.015	0.11	0.079	0.011	0.051
		Ba	*	5.8	2.8	4.4	6.8	3.6	4.9	2.3	3.7	3.2	2.3	5.5	3.8	2.6	3.5	3.9	0.088	0.29
		La	*	0.070	0.039	0.092	0.041	<0.011	0.022	0.028	0.052	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.027	0.011	0.036
		Се	*	0.073	0.013	0.073	< 0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.016	0.011	0.037
		Sm	*	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	< 0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	< 0.0093	<0.0093	<0.0093	0.0093	0.031
		Hf	*	<0.083	0.096	0.084	0.086	<0.083	0.084	<0.083	0.089	<0.083	<0.083	<0.083	0.090	<0.083	0.089	<0.083	0.083	0.28
		W	*	<0.0076	<0.0076	<0.0076	<0.0076	<0.0076	0.02	<0.0076	0.059	<0.0076	<0.0076	<0.0076	<0.0076	<0.0076	<0.0076	0.0089	0.0076	0.025
		Та	*	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	3.2	11
		Th	*	-	-	-	-	-	-	_	-	-	-	-	-	-	-	_		
		Pb		4.6	16	21	28	16	14	15	20	14	8.0	4.4	7.4	3.1	14	13	0.46	1.5
		Cd	**	0.30	0.44	0.71	0.63	0.36	0.46	0.44	0.60	0.38	0.21	0.086	0.26	0.077	0.39	0.38	0.024	0.080
	③炭素成分※	OC		5.1	4.8	4.6	4.2	3.5	4.8	3.8	4.8	4.0	2.7	3.3	3.1	3.8	4.0	4.0	0.33	1.1
	(µ g/m³)	EC		1.8	1.7	1.8	1.5	1.1	2.0	1.5	1.9	1.5	0.99	1.0	0.99	1.3	1.6	1.5	0.0049	0.016
W00	 :有機炭素	WSOC	**	3.4	2.9	3.0	2.6	2.1	2.7	2.3	2.7	2.6	1.1	2.0	1.9	1.9	2.4	2.4	0.028	0.094

EC:元素状炭素

WSOC:水溶性有機炭素

注1)平均値は、検出下限値未満の値を検出下限値の1/2として算出した。(炭素成分のフラクション値は、検出下限値未満の値をゼロとして、OC、EC値を算出した。)

注2) 表中の"-"は分析をしていないことを示す。(注3) 表中の"*"は成分分析ガイドラインの実施推奨項目を示す。 注4) 表中の"**"は成分分析ガイドラインにない項目を示す。

資料3-1 PM_{2.5}質量濃度及び各種成分濃度の分析結果

	平成25年度	孙 泰									大津市役所								始 出下限值	定量下限値
	十八八二十尺	1人子		H25.10.23	H25.10.24	H25.10.25	H25.10.26	H25.10.27	H25.10.28	H25.10.29	H25.10.30	H25.10.31	H25.11.1	H25.11.2	H25.11.3	H25.11.4	H25.11.5	秋季平均值	ス出「水温	人主:
	質量濃度(µ	g/m³)		6.1	5.8	5.4	10.3	14.9	19.1	15.2	25.7	24.2	20.3	31.7	38.7	21.4	25.5	18.9	-	-
	_	Cl⁻		0.026	0.10	0.037	0.064	0.051	0.096	0.073	0.079	0.19	0.078	0.20	0.78	0.10	0.098	0.14	0.0044	
	_	NO₃⁻		0.31	0.33	0.15	0.15	0.39	1.0	1.7	0.64	0.9	0.75	2.7	6.7	0.79	1.1	1.3	0.019	0.062
	-	SO ₄ ²⁻		1.3	0.76	1.0	3.3	4.4	3.6	2.5	9.7	9.0	5.9	8.7	7.2	8.8	6.8	5.2	0.0071	0.024
	①イオン成分	C ₂ O ₄ ²⁻	**	0.044	0.037	0.039	0.093	0.15	0.22	0.12	0.24	0.22	0.20	0.41	0.33	0.18	0.25	0.18	0.0011	0.0036
	(µ g/m³)	Na⁺		0.081	0.11	0.11	0.27	0.15	0.10	0.068	0.16	0.15	0.097	0.12	0.071	0.11	0.096	0.12	0.0091	0.030
	(μ 8/ /	NH₄⁺		0.54	0.38	0.37	1.2	1.7	1.7	1.4	3.5	3.4	2.4	3.7	4.7	3.2	2.7	2.2	0.0040	0.013
	_	K⁺		0.034	0.036	0.042	0.11	0.17	0.17	0.099	0.26	0.17	0.17	0.30	0.20	0.20	0.29	0.16	0.0047	0.016
	_	Mg²+		0.0099	0.011	0.011	0.031	0.018	0.014	<0.0091	0.033	0.025	0.015	0.022	<0.0091	0.024	0.030	0.018	0.0091	0.03
		Ca ²⁺		0.015	0.015	0.022	0.041	0.085	0.048	0.036	0.071	0.069	0.036	0.20	0.033	0.060	0.049	0.056	0.0081	0.027
	<u> </u>	Na		64	94	95	250	140	93	59	170	140	76	110	69	110	92	110	3.4	
		Al		8.7	16	42	35	40	38	21	84	130	49	63	31	62	43	47	2.0	
		Si	*	- 01	-	- 47	- 110	170	160	-	-	100	170	-	- 010	200	-	- 100	- 1.0	-
		K Ca		31 <2.6	33 <2.6	47 5.0	110 6.4	170 10	6.4	98 2.6	290 12	180 8.7	170 3.5	300 20	210 <2.6	11	280 5.0	160 6.8	1.2 2.6	
	-	Sc		<0.036	0.037	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	0.047	<0.036	<0.036	0.036	
	-	Ti	*	4.4	2.5	6.2	2.3	2.5	4.9	3.2	6.7	6.3	4.7	8.7	3.0	11	4.9	5.1	1.4	
	-		•	0.90	1.1	1.3	1.9	1.2	2.6	3.8	5.1	2.8	2.0	8.4	4.4	3.9	0.80	2.9	0.015	
	-	Cr		3.4	2.1	2.1	2.1	<1.2	1.7	2.5	1.8	1.8	<1.2	2.3	<1.2	2.2	2.5	1.9	1.2	
A	-	Mn	*	5.7	4.8	6.9	2.7	4.4	12	13	17	9.8	7.2	24	8.9	12	14	10	0.13	
各	-	Fe		66	68	84	71	55	110	140	180	140	91	230	120	150	140	120	17	
種	-	Co	*	<0.032	0.26	<0.032	0.098	0.35	0.057	<0.032	0.087	0.050	0.056	0.075	<0.032	0.13	0.13	0.097	0.032	0.11
成八		Ni		0.65	3.3	4.0	5.4	3.0	1.4	2.5	6.3	4.8	2.5	4.1	2.3	4.6	1.8	3.3	0.069	0.23
分		Cu	*	3.6	3.3	4.7	3.2	6.0	4.1	4.1	4.4	6.8	4.5	9.1	5.7	7.5	3.2	5.0	1.9	
濃	②無機元素成分	Zn		28	410	26	8.0	290	47	57	69	60	30	73	71	46	52	91	2.3	7.7
度	(ng/m³)	As		0.12	0.17	0.21	0.43	0.80	0.60	0.61	2.8	1.7	0.90	1.5	1.2	2.0	2.1	1.1	0.031	0.10
	(Hg/ III /	Se	*	<0.11	<0.11	< 0.11	<0.11	0.19	0.19	0.15	1.1	0.43	0.42	0.55	0.88	0.87	0.64	0.40	0.11	0.35
		Rb	*	0.085	0.14	0.14	0.30	0.46	0.42	0.30	1.1	0.63	0.51	0.82	0.54	1.0	1.3	0.55	0.023	
	_	Мо	*	0.59	0.67	0.67	0.20	0.36	0.77	1.5	1.4	0.96	0.76	1.3	1.4	0.85	0.66	0.86	0.080	0.27
	-	Sb		1.3	0.72	0.67	0.27	0.61	1.6	2.4	1.6	1.5	1.4	2.4	2.3	0.76	1.4	1.4	0.036	
	_	Cs	*	<0.0064	0.030	<0.0064	0.018	0.053	0.026	0.021	0.26	0.079	0.046	0.072	0.050	0.17	0.23	0.076	0.0064	
	-	Ba	*	2.0	1.9	1.4	1.1	2.0	3.0	3.1	3.1	3.1	2.6	6.5	2.9	2.7	2.9	2.7	0.095	
	-	La	*	0.055	0.046	0.051	<0.022	0.038	0.092	0.082	0.12	0.24	0.27	0.22	0.25	0.082	0.094	0.12	0.022	0.073 0.084
	-	<u>Ce</u> Sm	*	0.11 <0.019	0.084 <0.019	0.086 <0.019	<0.025 <0.019	0.052 <0.019	0.14 <0.019	0.13 <0.019	0.17 <0.019	0.17 <0.019	0.14 <0.019	<0.019	0.45 <0.019	0.10 <0.019	0.15 <0.019	0.15 <0.019	0.025 0.019	
	-	Sm Hf	*	<0.019	0.019	<0.019	0.019	<0.019	0.019	0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	0.019	
	-	W	*	0.049	0.095	0.16	<0.028	0.049	0.078	1.9	0.049	0.049	0.049	0.39	0.46	0.049	0.049	0.35	0.049	
	-	Ta	*	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	1.2	
	-	Th	*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Pb	Ė	3.9	3.2	3.8	4.1	8.8	9.4	13	23	15	11	17	16	26	27	13	0.52	1.7
		Cd	**	0.067	<0.048	0.052	<0.048	0.13	0.15	0.21	0.57	0.24	0.15	0.35	0.32	0.31	0.50	0.22	0.048	
	②出ませハツ	OC		1.9	1.9	1.5	2.0	3.3	5.5	4.5	4.2	4.0	5.0	9.2	6.7	3.2	6.0	4.2	0.33	
	③炭素成分※	EC		0.44	0.36	0.30	0.52	0.85	1.4	1.4	1.3	1.5	1.4	3.1	2.4	1.1	1.9	1.3	0.0049	0.016
	(μ g/m³) :有機炭素	WSOC	**	0.99	1.1	0.75	1.4	2.4	3.0	2.4	3.1	2.7	3.1	5.7	4.7	2.1	4.3	2.7	0.028	0.094

EC:元素状炭素

WSOC:水溶性有機炭素

注1)平均値は、検出下限値未満の値を検出下限値の1/2として算出した。

注2) 表中の"-"は分析をしていないことを示す。 注3) 表中の"-"は成分分析ガイドラインの実施推奨項目を示す。 注4) 表中の"**"は成分分析ガイドラインにない項目を示す。

資料3-2 PM_{2.5}質量濃度及び各種成分濃度の分析結果

	平成25年度										大東市役所								検出下限値	史是下阳位
	十成25年及	伙学		H25.10.23	H25.10.24	H25.10.25	H25.10.26	H25.10.27	H25.10.28	H25.10.29	H25.10.30	H25.10.31	H25.11.1	H25.11.2	H25.11.3	H25.11.4	H25.11.5	秋季平均值	快山下限旭	企里下限 1
	質量濃度(µ	g/m³)		4.6	3.2	6.5	10.3	16.3	15.2	12.3	26.7	24.4	15.0	40.8	28.9	21.4	21.7	17.7	-	-
		Cl⁻		0.0099	0.014	0.020	0.017	0.031	0.029	0.056	0.071	0.053	0.023	0.088	0.12	0.054	0.062	0.046	0.0044	
		NO₃⁻		0.073	0.069	0.073	0.091	0.33	0.35	0.89	0.56	0.6	0.24	1.6	2.4	0.58	0.64	0.61	0.019	0.00
		SO ₄ ²⁻		1.2	0.55	0.75	2.6	3.5	2.7	2.0	7.3	7.0	4.3	6.7	3.7	6.6	5.0	3.9	0.0071	0.02
	①イオン成分	C ₂ O ₄ ²⁻	**	0.031	0.021	0.031	0.061	0.12	0.13	0.087	0.17	0.13	0.12	0.27	0.20	0.12	0.14	0.12	0.0011	0.003
	(µ g/m³)	Na⁺		0.044	0.048	0.049	0.067	0.061	0.051	0.051	0.083	0.060	0.039	0.072	0.041	0.058	0.065	0.056	0.0091	0.03
	(μ g/ III /	NH₄⁺		0.48	0.22	0.31	1.0	1.4	1.2	1.1	2.7	2.7	1.8	2.8	2.2	2.6	2.0	1.6	0.0040	0.01
		K⁺		0.017	0.014	0.039	0.086	0.15	0.11	0.075	0.22	0.14	0.13	0.25	0.14	0.16	0.23	0.13	0.0047	0.01
		Mg²⁺		<0.0091	<0.0091	<0.0091	<0.0091	0.0095	<0.0091	<0.0091	0.014	0.012	<0.0091	0.0097	<0.0091	0.012	0.013	<0.0091	0.0091	0.0
		Ca²⁺		0.0091	0.016	0.021	0.019	0.044	0.035	0.020	0.047	0.036	0.036	0.063	0.013	0.03	0.036	0.030	0.0081	0.02
		Na		280	190	200	400	290	270	190	340	270	310	300	250	290	310	280	3.4	
	<u> </u>	Al		57	17	51	50	58	64	43	110	71	110	120	85	100	120	75	2.0	6
	<u> </u>	Si	*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		K		49	36	67	130	190	140	100	310	200	190	330	220	240	330	180	1.2	
	-	Ca		22	8.2	13	18	22	24	20	40	25	45	40	32	38	43	28	2.6	
	-	Sc		<0.036	<0.036	<0.036	<0.036	<0.036	0.073	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	0.036	
		<u>Ti</u>	*	5.0	<1.4	6.6	2.6	2.9	8.7	3.3	7.4	3.5	8.0	10	6.3	6.2	12	5.9	1.4	
		V		1.3	0.38	0.31	0.32	0.50	1.3	1.8	2.7	0.69	0.76	2.3	3.0	0.78	0.73 2.5	1.2	0.015	
		Cr		3.6	<1.2 3.0	1.9	<1.2	<1.2	<1.2	2.3	2.8	<1.2	<1.2	2.2	2.1	2.7		1.7	1.2	
各	-	Mn Fe	*	6.1 170	3.0	9.4 120	5.5 65	5.3 70	11 150	8.1 110	19 220	11 150	10 210	22 220	15 140	12 200	15 200	11 150	0.13 17	
種	-	Co	*	<0.032	<0.032	0.067	0.051	0.036	0.086	0.037	0.13	0.051	0.48	0.2	0.10	0.13	0.18	0.11	0.032	5 0.1
成		Ni	ጥ	1.1	0.32	0.55	0.031	0.82	1.8	1.4	2.7	0.85	1.8	2.2	2.2	1.4	1.8	1.4	0.032	
分		Cu	*	<1.9	<1.9	2.0	<1.9	3.3	3.8	<1.9	5.2	2.3	2.4	8.7	3.6	3.6	5.1	3.1	1.9	
濃		Zn	-1-	25	36	73	58	53	75	41	89	65	770	280	180	150	160	150	2.3	
度	②無機元素成分	As		0.26	0.22	0.40	0.56	0.92	0.53	0.40	2.1	1.5	0.97	1.7	1.3	2.4	2.5	1.1	0.031	0.1
	(ng/m³)	Se	*	0.19	<0.11	0.23	0.33	0.53	0.28	0.47	1.3	0.82	0.78	0.82	0.76	1.5	1.1	0.65	0.001	0.3
		Rb	*	0.071	0.029	0.14	0.31	0.44	0.35	0.24	1.1	0.65	0.56	0.87	0.56	1.1	1.3	0.55	0.023	
	-	Mo	*	0.42	0.10	0.31	0.15	0.24	0.52	1.3	1.3	0.38	0.63	1.1	0.90	0.47	0.83	0.62	0.080	
		Sb		0.48	0.52	1.5	0.84	0.87	1.2	1.4	3.1	2.1	1.4	3.2	5.3	1.2	2.3	1.8	0.036	
		Cs	*	<0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	0.15	0.046	0.023	0.055	0.011	0.14	0.21	0.047	0.0064	0.02
		Ba	*	1.5	0.97	3.8	2.0	2.9	3.5	2.8	5.3	4.0	4.8	8.4	5.2	5.3	5.7	4.0	0.095	0.3
		La	*	<0.022	<0.022	0.047	0.087	0.097	0.057	0.068	0.16	0.11	0.084	0.2	0.15	0.13	0.15	0.097	0.022	0.07
		Ce	*	<0.025	<0.025	0.085	0.17	0.18	0.092	0.12	0.28	0.21	0.15	0.39	0.30	0.21	0.24	0.18	0.025	0.08
		Sm	*	<0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	< 0.019	<0.019	0.019	0.06
		Hf	*	<0.049	< 0.049	< 0.049	< 0.049	< 0.049	0.54	< 0.049	<0.049	< 0.049	<0.049	<0.049	<0.049	< 0.049	< 0.049	0.061	0.049	0.1
		W	*	0.13	<0.028	0.092	<0.028	<0.028	0.71	1.7	0.40	0.16	0.12	0.52	0.51	0.05	0.27	0.34	0.028	0.7
		Ta	*	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	1.2	4.
		Th	*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Pb		3.5	2.3	4.8	6.0	10	10	6.4	26	16	13	22	17	28	29	14	0.52	
		Cd	**	0.16	0.12	0.19	0.24	0.30	0.29	0.25	0.57	0.38	0.29	0.52	0.48	0.49	0.74	0.36	0.048	• • • • • • • • • • • • • • • • • • • •
	③炭素成分※	OC		1.2	1.4	2.2	1.9	3.2	3.7	2.8	4.1	3.0	3.4	9.4	4.9	2.4	4.2	3.4	0.33	-
	○灰系成ガ☆ (μ g/m³)	EC		0.15	0.087	0.28	0.41	0.81	0.95	0.85	1.3	1.1	0.80	2.8	1.4	0.73	1.3	0.93	0.0049	0.01
	\µ g/ III /	WSOC	**	0.89	0.49	0.71	1.4	2.3	2.6	2.0	2.9	2.3	2.4	5.5	3.2	2.1	3.3	2.3	0.028	0.094

※OC∶有機炭素 EC∶元素状炭素

WSOC:水溶性有機炭素

注1)平均値は、検出下限値未満の値を検出下限値の1/2として算出した。

注2) 表中の"-"は分析をしていないことを示す。 注3) 表中の"-"は成分分析ガイドラインの実施推奨項目を示す。 注4) 表中の"**"は成分分析ガイドラインにない項目を示す。

資料3-3 PM_{2.5}質量濃度及び各種成分濃度の分析結果

	 平成25年度									外	環河内長野	7							検出下限値	定量下限値
	一,从20千及	1入子		H25.10.23	H25.10.24	H25.10.25	H25.10.26	H25.10.27	H25.10.28	H25.10.29	H25.10.30	H25.10.31	H25.11.1	H25.11.2	H25.11.3	H25.11.4	H25.11.5	秋季平均值	15日「以間	企业
	質量濃度(µ	g/m^3)		6.2	5.6	4.6	10.3	15.0	17.4	14.2	25.3	23.4	23.4	35.1	31.3	20.0	23.5	18.2	-	-
		Cl⁻		0.034	0.11	0.048	0.13	0.049	0.037	0.044	0.084	0.047	0.060	0.096	0.35	0.11	0.091	0.092	0.0044	0.015
		NO₃⁻		0.30	0.30	0.20	0.26	0.29	0.56	1.2	0.60	0.49	0.64	1.4	4.2	0.70	0.74	0.85	0.019	0.062
		SO ₄ ²⁻		0.94	0.55	0.76	3.3	4.2	3.4	2.5	9.3	8.9	7.0	9.6	6.7	8.0	6.9	5.1	0.0071	0.024
	①イオン成分	C ₂ O ₄ ²⁻	**	0.041	0.043	0.026	0.096	0.15	0.20	0.13	0.23	0.17	0.20	0.36	0.31	0.16	0.24	0.17	0.0011	0.0036
	(µ g/m³)	Na⁺		0.051	0.11	0.060	0.19	0.10	0.087	0.054	0.13	0.12	0.076	0.10	0.074	0.068	0.12	0.096	0.0091	0.030
	,, ,	NH₄⁺		0.45	0.28	0.34	1.2	1.6	1.4	1.3	3.2	3.1	2.6	3.7	3.7	3.0	2.6	2.0	0.0040	0.013
		K⁺		0.033	0.038	0.028	0.10	0.16	0.14	0.088	0.26	0.18	0.21	0.25	0.20	0.17	0.29	0.15	0.0047	0.016
		Mg ²⁺		<0.0091	<0.0091	<0.0091	0.025	0.015	0.013	<0.0091	0.028	0.020	0.016	0.016	0.0097	0.016	0.024	0.014	0.0091	0.03
		Ca²⁺		0.017	0.015	0.017	0.029	0.026	0.031	0.023	0.057	0.039	0.037	0.041	0.023	0.027	0.042 75	0.030	0.0081	0.027
		Na Al		35 13	41 14	41 20	160 24	61 16	62 22	35 13	110 70	100 38	66 31	78 33	56 17	55 24	32	70 26	3.4 2.0	6.6
		Si	*	-	- 14			-	-	-	-		- -		-		-	-		- 0.0
		K	т	27	35	33	100	130	120	75	280	190	200	240	190	160	260	150	1.2	3.9
	•	Ca		<2.6	<2.6	4.7	3.4	<2.6	<2.6	<2.6	9.4	4.4	2.9	5.7	<2.6	2.8	5.5	3.3	2.6	
		Sc		<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	0.036	0.12
		Ti	*	1.4	2.6	<1.4	1.8	1.4	2.7	3.3	6.1	4.0	4.4	4.4	3.0	4.4	4.7	3.2	1.4	4.8
		V		0.51	0.30	0.081	0.50	0.30	1.5	2.2	2.0	0.43	0.56	2.1	3.0	0.85	0.45	1.1	0.015	0.049
		Cr		<1.2	2.7	1.2	<1.2	<1.2	<1.2	<1.2	3.7	3.4	2.5	1.2	2.0	1.5	1.7	1.6	1.2	3.9
各		Mn	*	4.8	3.7	3.7	3.1	2.3	8.5	7.1	12	7.6	7.9	8.8	5.7	7.8	11	6.7	0.13	0.42
種		Fe		45	41	41	45	35	71	87	140	72	77	86	68	83	110	72	17	55
成		Со	*	<0.032	0.19	<0.032	<0.032	<0.032	0.16	<0.032	0.044	<0.032	<0.032	0.075	<0.032	<0.032	<0.032	0.045	0.032	0.11
分		Ni		0.25	0.34	0.19	0.21	0.44	1.1	1.2	1.1	0.37	0.52	1.8	1.2	0.61	0.49	0.70	0.069	0.23
濃		Cu	*	<1.9	<1.9	<1.9	<1.9	<1.9	2.5	3.1	3.5	2.1	2.5	2.5	3.2	3.1	3.2	2.2	1.9	6.4
度	②無機元素成分	Zn		21	30	19	22	13	27	28	50	46	35	34 1.3	33	38	43	31 0.96	2.3	7.7
	(ng/m³)	As Se	*	0.062 <0.11	0.11 <0.11	0.12 <0.11	0.48 0.30	0.52 0.20	0.40 0.22	0.50 0.54	2.5 1.5	1.4 0.71	1.1 0.66	0.64	1.1 0.48	1.9 0.85	1.9 0.83	0.96	0.031	0.10 0.35
	•	- Se Rb	*	<0.01	<0.023	<0.01	0.30	0.20	0.22	0.14	1.0	0.71	0.50	0.64	0.48	0.85	1.1	0.31	0.11	0.076
		Mo	*	0.30	0.025	0.32	0.17	0.21	0.20	1.0	0.93	0.36	0.49	0.54	0.57	0.70	0.54	0.49	0.023	0.070
		Sb		0.78	0.52	0.84	0.47	0.43	0.90	1.4	1.4	1.4	1.8	1.4	3.8	0.77	1.1	1.2	0.036	0.12
		Cs	*	<0.0064	< 0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	0.21	0.033	0.020	0.027	<0.0064	0.089	0.18	0.042	0.0064	0.021
		Ва	*	2.1	2.0	1.5	2.5	2.4	2.9	2.9	3.3	3.2	3.4	3.7	3.5	4.7	3.6	3.0	0.095	0.32
		La	*	0.053	0.047	0.058	0.057	0.055	0.067	0.080	0.11	0.073	0.075	0.093	0.15	0.078	0.083	0.077	0.022	0.073
		Се	*	0.062	0.055	0.075	0.060	0.052	0.060	0.11	0.15	0.087	0.10	0.13	0.25	0.073	0.10	0.097	0.025	0.084
		Sm	*	<0.019	<0.019	0.020	<0.019	<0.019	<0.019	<0.019	0.025	0.022	0.022	0.020	0.020	<0.019	0.020	<0.019	0.019	0.063
		Hf	*	<0.049	<0.049	<0.049	<0.049	0.12	0.094	<0.049	<0.049	<0.049	<0.049	<0.049	0.14	<0.049	<0.049	<0.049	0.049	0.16
		W	*	0.32	0.26	0.18	0.036	<0.028	0.069	1.8	0.25	0.093	0.070	0.18	0.24	0.067	0.12	0.26	0.028	0.71
		Та	*	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	1.2	4.0
		Th	*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 0.50	
		Pb	dut	2.2	2.5	2.8	4.5	5.7	5.8	5.7	21	14	12	14	13	20	25	11	0.52	1.7
		OC Cd	**	<0.048 3.0	<0.048 2.2	<0.048 1.5	<0.048 2.3	<0.048 3.6	0.070 5.2	0.072 4.4	0.47 4.2	0.19 4.3	0.18 6.5	0.28 9.2	0.23 6.9	0.21 3.6	0.42 5.3	0.16 4.4	0.048	0.16
	③炭素成分※	EC		0.88	0.60	0.53	0.63	1.0	1.4	1.7	1.8	1.5	1.9	2.6	2.5	1.4	2.2	1.5	0.0049	1.1
	$(\mu g/m^3)$	WSOC	**	1.1	1.2	0.53	1.5	2.7	3.5	2.6	3.0	3.0	4.0	6.3	4.7	2.2	4.3	2.9	0.0049	0.016 0.094
×00	<u> </u>	WSOC	**	1.1	I.Z	0.00	1.0	Z.1	ა.ა	2.0	3.0	3.0	4.0	0.3	4./	۷.۷	4.3	2.9	0.028	0.094

EC:元素状炭素

WSOC:水溶性有機炭素

注1)平均値は、検出下限値未満の値を検出下限値の1/2として算出した。

注2) 表中の"-"は分析をしていないことを示す。 注3) 表中の"-"は成分分析ガイドラインの実施推奨項目を示す。 注4) 表中の"**"は成分分析ガイドラインにない項目を示す。

資料4-1 PM_{2.5}質量濃度及び各種成分濃度の分析結果

	平成25年度	カモ								泉之	大津市役所								公山下阳 庙	定量下限値
	平成25年度	冬学		H26.1.22	H26.1.23	H26.1.24	H26.1.25	H26.1.26	H26.1.27	H26.1.28	H26.1.29	H26.1.30	H26.1.31	H26.2.1	H26.2.2	H26.2.3	H26.2.4	冬季平均値	快山下限胆	企里 下限 恒
	質量濃度(p	g/m³)		15.3	14.5	28.6	39.3	8.8	13.8	20.3	18.8	37.7	16.4	28.5	25.8	30.8	2.9	21.5	-	-
		Cl⁻		0.20	0.19	0.73	0.96	0.12	0.30	0.47	0.63	2.5	0.30	0.56	0.46	1.0	0.082	0.61	0.0044	0.015
		NO₃⁻		1.2	1.2	5.6	11	0.28	3.1	3.6	2.2	5.9	1.4	4.1	3.3	7.2	0.19	3.6	0.019	0.062
		SO ₄ 2-		4.4	4.3	5.3	7.3	3.1	1.7	4.8	3.7	6.2	4.2	5.1	6.6	6.2	0.82	4.6	0.0071	0.024
	①イオン成分	- 2 - 4	**	0.10	0.11	0.18	0.23	0.081	0.068	0.12	0.12	0.22	0.12	0.21	0.24	0.18	0.016	0.14	0.0011	0.0036
	(µ g/m³)	Na⁺		0.11	0.074	0.098	0.12	0.19	0.13	0.20	0.17	0.18	0.23	0.17	0.091	0.16	0.074	0.14	0.0091	0.030
	,, ,	NH₄⁺		2.1	2.1	3.9	6.0	1.3	1.7	2.9	2.1	4.9	2.0	3.1	3.6	4.6	0.41	2.9	0.0040	0.013
		K⁺		0.11	0.11	0.20	0.22	0.090	0.077	0.18	0.16	0.31	0.20	0.26	0.31	0.28	0.021	0.18	0.0047	0.016
		Mg²+	-	0.012	0.010	0.011	0.012	0.019	0.014	0.021	0.022	0.021	0.028	0.018	0.018	0.017	<0.0091	0.016	0.0091	0.030
		Ca²⁺		0.041	0.041	0.050	0.063	0.026	0.035	0.045	0.045	0.057	0.069	0.068	0.035	0.050	0.024	0.046	0.0081	0.027
		Na Al	-	110 40	69 17	93 30	130 47	180 17	120 14	190 33	150 30	180 42	220 81	150 160	75 34	150 39	58 5.7	130 42	3.4 2.0	
			*	4 0	- 17	<u> 30</u> –	4 <i>/</i>	-	- 14	-	-	4Z -	- 81	-		- 39	5. <i>1</i>	4Z -		- 0.0
		K	4"	120	110	190	220	99	88	190	160	290	190	260	290	270	21	180	1.2	3.9
		Ca	_	6.9	4.8	9.2	8.4	6.5	5.0	7.1	5.7	11	8.3	7.9	5.7	8.9	4.7	7.2	2.6	
		Sc		<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	0.036	0.12
	Ī		*	5.3	2.8	12	5.0	<1.4	1.5	2.7	2.8	6.5	4.4	3.6	<1.4	2.0	<1.4	3.6	1.4	
	Ī	V		2.6	1.9	10	18	2.4	5.0	7.5	3.0	11	2.1	7.8	4.1	20	1.5	6.9	0.015	
		Cr		<1.2	<1.2	<1.2	5.8	<1.2	1.8	2.9	1.7	7.2	6.2	1.4	<1.2	2.9	<1.2	2.4	1.2	
各		Mn	*	7.2	6.7	16	20	2.4	12	20	15	33	9.5	14	7.6	21	1.2	13	0.13	0.42
種		Fe		130	81	160	280	25	140	180	140	300	130	160	110	200	18	150	17	
成			*	0.068	<0.032	<0.032	0.11	<0.032	<0.032	0.065	<0.032	0.16	0.10	0.037	<0.032	0.14	<0.032	0.057	0.032	0.11
分	_	Ni		2.3	1.1	4.6	12	2.7	2.8	4.5	1.9	7.6	5.4	4.4	1.3	10	2.9	4.5	0.069	0.23
濃	_	- Ou	*	7.4	4.6	7.1	9.3	3.4	4.8	7.3	5.8	13	3.8	8.0	6.0	12	4.3	6.9	1.9	
度	②無機元素成分	Zn		24	18	67	120	3.6	30	73	130	260	32	72	65	130	<2.3	73	2.3	
100	(ng/m³)	As		1.1	1.3	1.6	3.1	1.2	0.95	3.6	1.1	2.7	1.5	1.4	3.1	2.8	0.17	1.8	0.031	0.10
			*	0.57	0.29	0.86	2.3	0.20	0.28	2.3	0.56	1.1	0.83	1.7	1.4	1.2	<0.11	0.97	0.11	0.35
	-		*	0.41 0.88	0.34	0.54	0.93	0.22	0.19	0.69	0.44	0.93	0.65	0.77	1.1	0.88	<0.023	0.58	0.023	0.076 0.27
	-	Mo Sb	*	0.88	0.58 1.1	1.5 2.0	2.8	0.40 0.34	1.2	2.0 1.3	0.80 1.5	2.6 4.8	0.48 2.8	1.2 2.3	0.69 2.1	2.6 1.7	0.22 0.14	1.3	0.080	0.27
	-		*	0.75	<0.0064	0.017	0.17	<0.0064	<0.0064	0.080	<0.0064	0.12	0.041	0.070	0.23	0.14	<0.0064	0.064	0.036	0.12
	-		*	2.2	1.9	4.3	3.6	0.84	2.4	4.0	3.7	6.4	3.7	4.5	10	9.4	0.93	4.1	0.0004	0.021
	F		*	<0.022	<0.022	0.13	0.19	<0.022	<0.022	0.084	0.040	0.30	0.023	0.15	0.025	0.10	<0.022	0.078	0.033	0.073
			*	0.031	0.067	0.31	0.39	<0.025	0.064	0.25	0.19	0.72	0.15	0.33	0.13	0.23	<0.025	0.21	0.025	
	Ī		*	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	0.019	0.063
	Ī	Hf	*	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	0.049	0.16
		W	*	<0.028	<0.028	<0.028	0.21	<0.028	0.033	0.091	<0.028	0.62	<0.028	<0.028	<0.028	0.21	<0.028	0.092	0.028	0.71
		Та	*	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	1.2	4.0
			*	-	_	_	-	-	_	-	-	_	-	_	-	-	-	_	_	-
		Pb		9.7	8.4	13	21	5.0	9.8	14	14	38	15	20	22	21	1.1	15	0.52	1.7
			**	0.11	0.16	0.30	0.63	0.052	0.38	0.42	0.35	0.82	0.24	0.53	0.61	0.59	<0.048	0.37	0.048	
	③炭素成分※	OC		2.3	2.7	5.0	5.3	1.6	2.5	3.2	3.9	5.4	3.3	6.1	4.2	3.8	0.79	3.6	0.33	
	(µ g/m³)	EC		0.74	0.87	2.0	2.3	0.34	1.0	1.2	1.4	3.1	1.2	2.4	1.5	2.0	0.13	1.4	0.0049	0.016
L		WSOC >	**	2.2	2.6	3.7	4.0	1.8	2.2	2.6	3.1	4.0	2.8	4.3	3.3	3.1	0.74	2.9	0.028	0.094

EC:元素状炭素

WSOC:水溶性有機炭素

注1)平均値は、検出下限値未満の値を検出下限値の1/2として算出した。

注2) 表中の"-"は分析をしていないことを示す。 注3) 表中の"*"は成分分析ガイドラインの実施推奨項目を示す。 注4) 表中の"**"は成分分析ガイドラインにない項目を示す。

資料4-2 PM_{2.5}質量濃度及び各種成分濃度の分析結果

	亚芹亚东南	₽ ₹								7	大東市役所								検出下限値	ウミて明は
	平成25年度	令学		H26.1.22	H26.1.23	H26.1.24	H26.1.25	H26.1.26	H26.1.27	H26.1.28	H26.1.29	H26.1.30	H26.1.31	H26.2.1	H26.2.2	H26.2.3	H26.2.4	冬季平均值	快田下限旭	正里 下限胆
	質量濃度(µ	g/m³)		14.6	16.3	28.5	37.7	9.1	18.3	21.2	20.7	33.7	11.5	23.1	29.0	24.3	3.0	20.8	-	-
		Cl⁻		0.28	0.26	0.51	0.92	0.071	0.77	0.44	0.60	1.7	0.17	0.32	0.50	0.45	0.23	0.52	0.0044	0.015
	_	NO₃⁻		1.5	1.6	5.5	10	0.22	3.4	3.8	2.9	6.1	0.98	3.5	5.4	6.0	0.42	3.7	0.019	0.062
	_	SO ₄ 2-		3.7	4.1	5.0	5.9	3.0	1.7	5.0	4.0	5.6	2.8	4.7	6.2	3.9	0.54	4.0	0.0071	0.024
	①イオン成分	C ₂ O ₄ ²⁻	**	0.076	0.095	0.16	0.18	0.060	0.067	0.11	0.13	0.18	0.068	0.19	0.21	0.16	0.015	0.12	0.0011	0.0036
	(µ g/m³)	Na⁺		0.094	0.093	0.11	0.11	0.12	0.16	0.16	0.22	0.15	0.27	0.14	0.11	0.076	0.034	0.13	0.0091	0.030
	, , , , , , , , , , , , , , , , , , ,	NH₄⁺		1.9	2.1	3.4	5.1	1.2	1.8	2.9	2.3	4.2	1.2	2.7	3.8	3.1	0.47	2.6	0.0040	0.013
	-	K⁺		0.11	0.11	0.19	0.21	0.090	0.13	0.14	0.18	0.26	0.12	0.20	0.23	0.21	0.020	0.16	0.0047	0.016
	-	Mg ²⁺		0.011	0.012	0.011	0.011	0.013	0.016	0.015	0.025	0.013	0.031	0.018	0.012	0.015	<0.0091	0.015	0.0091	0.030
		Ca²⁺		0.034	0.036	0.053	0.052	0.012	0.047	0.040	0.053	0.036	0.042	0.050	0.023	0.030	0.0095	0.037	0.0081	0.027
		Na Na		89 25	84 26	110 28	120	120	150 20	160	210	150 27	320 27	140	110	81 29	29 51	130 28	3.4 2.0	6.6
		Al Si	*				38	10		27 -	32	-	-	32	23		- 51		2.0	- 6.0
	-	K	•	120	120	200	230	90	140	150	180	280	120	210	250	220	20	170	1.2	3.9
		Ca		6.3	4.9	9.6	8.1	3.3	6.8	6.1	7.3	6.5	4.9	6.2	3.8	4.0	<2.6	5.7	2.6	8.8
		Sc		<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	0.036	0.12
	-	Ti	*	5.5	3.8	20	7.8	6.2	8.4	3.8	7.3	5.4	6.9	3.8	4.4	8.7	3.2	6.8	1.4	4.8
	-	V		0.56	0.60	6.0	7.5	0.21	4.6	7.8	4.2	13	1.2	5.0	6.0	5.3	0.022	4.4	0.015	0.049
		Cr		<1.2	<1.2	2.9	2.9	<1.2	2.3	1.2	2.4	5.1	<1.2	1.4	<1.2	2.8	<1.2	1.8	1.2	3.9
各		Mn	*	7.5	17	32	21	1.5	23	14	19	34	5.4	15	17	19	5.7	17	0.13	0.42
種		Fe		99	160	260	230	<17	280	160	250	320	68	150	170	180	29	170	17	55
成		Co	*	<0.032	<0.032	0.075	0.051	<0.032	0.034	0.035	0.090	0.12	<0.032	<0.032	<0.032	0.081	<0.032	0.043	0.032	0.11
分		Ni		1.2	0.59	3.6	4.3	<0.069	3.2	3.6	5.1	6.9	1.2	2.9	2.5	3.3	<0.069	2.7	0.069	0.23
濃	-	Cu	*	5.5	3.7	11	9.1	<1.9	6.8	6.2	8.3	15	3.4	5.9	7.1	7.7	<1.9	6.5	1.9	6.4
度	②無機元素成分	Zn		17	39	81	83	<2.3	62	49	88	120	13	57	120	64	<2.3	57	2.3	7.7
/~	(ng/m³)	As		0.96	1.3	1.7	1.8	1.1	0.75	3.1	1.4	2.7	1.5	1.5	2.0	1.8	0.14	1.6	0.031	0.10
	-	Se	*	0.36	0.53	1.3	1.4	0.21	0.35	2.4	0.67	1.5	0.72	1.9	1.9	0.74	<0.11	1.0	0.11	0.35
	-	Rb Mo	*	0.34 0.72	0.34 0.60	0.66 1.7	0.73 2.6	0.20 0.16	0.29 1.3	0.54 1.5	0.52 1.2	0.99 3.0	0.38 0.27	0.67 1.0	0.96 1.4	0.56 1.3	<0.023 <0.080	0.51 1.2	0.023	0.076
		Sb	•	1.5	1.3	2.7	2.0	0.16	2.0	1.9	2.9	4.4	1.6	2.0	2.0	1.8	1 1	2.0	0.080	0.27
	-	Cs Cs	*	<0.0064	<0.0064	0.053	0.086	<0.0064	<0.0064	0.076	0.010	0.17	<0.0064	0.061	0.19	0.062	<0.0064	0.052	0.0064	0.021
	-	Ba	*	2.3	2.0	4.2	4.5	0.76	3.6	2.9	4.1	4.5	2.1	3.6	5.2	7.9	0.76	3.5	0.0004	0.02
	-	La	*	0.24	0.078	0.092	0.32	<0.022	0.094	0.10	0.063	0.14	<0.022	0.12	0.098	0.11	<0.022	0.11	0.022	0.073
	-	Ce	*	0.64	0.29	0.27	0.73	<0.025	0.30	0.32	0.18	0.32	0.049	0.26	0.29	0.32	0.049	0.29	0.025	0.084
	•	Sm	*	<0.019	< 0.019	<0.019	< 0.019	<0.019	< 0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	< 0.019	<0.019	<0.019	0.019	0.063
		Hf	*	<0.049	< 0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	< 0.049	<0.049	<0.049	0.049	0.16
		W	*	<0.028	<0.028	0.17	0.29	<0.028	0.067	0.058	0.30	0.68	<0.028	0.19	0.65	0.29	0.13	0.21	0.028	0.71
		Та	*	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	1.2	4.0
		Th	*	-	-	ı	-	-	-	-	-	-	-	-	-	-	-	-	_	
		Pb		8.7	13	16	19	4.9	13	16	21	35	14	17	30	21	1.6	16	0.52	1.7
		Cd	**	0.11	0.20	0.32	0.49	<0.048	0.62	0.52	0.33	0.84	0.13	0.42	0.72	0.49	<0.048	0.37	0.048	0.16
	③炭素成分※	OC		3.6	3.1	5.4	5.8	2.0	4.2	4.0	4.6	5.0	2.5	4.6	4.4	3.9	0.67	3.8	0.33	1.1
	(μ g/m³)	EC		1.1	1.1	2.1	2.3	0.35	1.6	1.6	1.8	2.6	0.73	1.6	1.8	1.8	0.093	1.5	0.0049	0.016
		WSOC	**	2.4	2.7	3.5	4.1	2.1	2.6	2.9	3.4	3.5	2.3	3.5	3.4	2.9	0.73	2.9	0.028	0.094

EC:元素状炭素

WSOC:水溶性有機炭素

注1)平均値は、検出下限値未満の値を検出下限値の1/2として算出した。

注2) 表中の"-"は分析をしていないことを示す。 注3) 表中の"*"は成分分析ガイドラインの実施推奨項目を示す。 注4) 表中の"**"は成分分析ガイドラインにない項目を示す。

資料4-3 PM_{2.5}質量濃度及び各種成分濃度の分析結果

	亚芹亚东南	夕壬								外	環河内長野	7							検出下限値	定量下限値
	平成25年度	令学		H26.1.22	H26.1.23	H26.1.24	H26.1.25	H26.1.26	H26.1.27	H26.1.28	H26.1.29	H26.1.30	H26.1.31	H26.2.1	H26.2.2	H26.2.3	H26.2.4	冬季平均值	快出下限胆	企里下限 他
	質量濃度(µ	g/m^3)		14.6	15.3	23.3	32.7	10.0	12.9	18.4	14.7	30.3	18.7	29.3	21.7	30.0	3.5	19.7	-	-
		Cl⁻		0.15	0.11	0.30	0.69	0.12	0.23	0.26	0.19	0.49	0.11	0.35	0.090	0.45	0.091	0.26	0.0044	0.015
	_	NO₃⁻		0.94	1.2	3.4	5.6	0.30	1.9	2.6	1.1	3.2	1.3	3.6	1.3	5.9	0.34	2.3	0.019	0.062
	_	SO ₄ 2-		4.0	4.1	5.3	5.6	3.1	1.6	4.2	3.2	6.7	5.0	5.6	6.2	6.0	0.69	4.4	0.0071	0.024
	①イオン成分	$C_2O_4^{2-}$	**	0.092	0.10	0.16	0.17	0.051	0.070	0.11	0.087	0.22	0.11	0.19	0.21	0.17	0.013	0.13	0.0011	0.0036
	(µ g/m³)	Na⁺		0.079	0.057	0.058	0.087	0.12	0.11	0.10	0.13	0.12	0.18	0.12	0.059	0.10	0.044	0.097	0.0091	0.030
	,, 0	NH₄⁺		1.8	1.9	3.0	3.8	1.3	1.2	2.4	1.5	3.4	2.1	3.1	2.6	3.8	0.43	2.3	0.0040	0.013
	-	K⁺		0.085	0.099	0.12	0.22	0.092	0.088	0.13	0.11	0.26	0.19	0.22	0.32	0.31	0.021	0.16	0.0047	0.016
	-	Mg ²⁺		0.011	0.011 0.028	0.0097	0.011	0.019	0.013	0.014 0.032	0.021	0.024	0.019	0.016	0.020	0.023	<0.0091	0.015	0.0091	0.030
		Ca²⁺ Na		0.043 75	35	0.037 47	0.055 95	0.026 130	0.022 99	89	0.031 160	0.030 150	0.044 190	0.040 120	0.021 66	0.028 97	0.021 41	0.033 100	3.4	0.027
'	-	Na		22	6.5	18	42	7.7	5.2	17	25	42	48	45	50	45	9.8	27	2.0	6.6
1	ļ	Si	*	-	- 0.0	-	- 42	-	- -	-		- 42	-	43 -	- 50	40 -	9.6	-		- 0.0
	-	K	T	81	69	100	230	91	67	99	120	280	200	220	330	320	22	160	1.2	3.9
	=	Ca		4.4	<2.6	7.2	8.1	<2.6	5.1	3.6	4.9	6.6	11	6.3	7.5	7.6	<2.6	5.4	2.6	8.8
	-	Sc		<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	<0.036	0.036	0.12
		Ti	*	3.7	<1.4	1.5	4.1	<1.4	1.4	2.1	2.2	6.2	4.5	4.0	7.1	3.8	1.6	3.1	1.4	4.8
		V		1.0	1.4	5.8	8.6	0.26	2.5	4.1	1.3	5.6	1.7	4.5	2.6	7.1	0.89	3.4	0.015	0.049
		Cr		1.6	<1.2	1.4	1.5	<1.2	<1.2	<1.2	1.9	1.3	1.8	<1.2	5.3	1.5	<1.2	1.4	1.2	3.9
各		Mn	*	4.4	3.8	7.7	16	2.1	5.6	6.9	7.8	18	6.5	13	6.0	14	3.2	8.2	0.13	0.42
種	_	Fe		63	39	95	180	21	55	81	85	190	98	140	100	140	31	94	17	55
成	-	Со	*	<0.032	<0.032	0.24	0.038	<0.032	<0.032	0.094	<0.032	0.044	0.051	<0.032	0.036	<0.032	<0.032	0.045	0.032	0.11
分	-	Ni		0.57	0.34	3.2	4.4	<0.069	0.82	1.1	1.2	2.9	0.94	2.3	3.8	4.0	0.65	1.9	0.069	0.23
濃	_	Cu	*	2.7	<1.9	4.2	7.1	<1.9	2.5	2.1	2.6	5.4	2.6	5.5	6.1	5.1	<1.9	3.5	1.9	6.4
度	②無機元素成分	Zn		8.6	6.4	26	65	<2.3	13	22	32	120	17	45	39	77	7.5	34 1.6	2.3	7.7
	(ng/m³)	As Se	*	0.76 0.20	0.98 0.28	1.3 0.91	2.3	1.3	0.47 0.18	2.1 1.3	0.87 0.51	2.8 1.2	1.3 0.91	1.4 1.2	3.1 0.88	2.9 1.3	0.17 <0.11	0.76	0.031	0.10 0.35
	-	Rb	*	0.20	0.20	0.31	0.86	0.11	0.18	0.35	0.33	0.94	0.69	0.72	0.88	0.96	<0.01	0.70	0.023	0.076
	-	Mo	*	0.57	0.52	0.82	3.6	0.21	0.13	0.89	0.33	1.3	0.70	0.72	0.64	1.7	0.023	0.43	0.023	0.070
	-	Sb		0.58	0.75	1.3	3.6	0.31	1.1	0.75	1.0	2.5	0.91	3.0	1.3	1.6	0.32	1.4	0.036	0.12
	-	Cs	*		<0.0064	<0.0064	0.15	<0.0064	<0.0064	0.034	<0.0064	0.12	0.071	0.077	0.15	0.16	<0.0064	0.056	0.0064	0.021
		Ва	*	3.0	2.0	3.2	4.4	1.9	2.7	2.3	4.0	5.7	4.8	6.7	14	13	2.1	5.0	0.095	0.32
		La	*	<0.022	<0.022	<0.022	0.087	<0.022	<0.022	<0.022	<0.022	0.050	<0.022	0.12	<0.022	0.077	<0.022	0.032	0.022	0.073
		Ce	*	0.042	<0.025	0.054	0.15	<0.025	<0.025	0.027	0.045	0.18	0.062	0.25	0.029	0.17	<0.025	0.076	0.025	0.084
1	_	Sm	*	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	0.019	0.063
	_	Hf	*	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	0.049	0.16
	-	W	*	<0.028	<0.028	<0.028	0.31	<0.028	<0.028	<0.028	<0.028	0.52	0.069	<0.028	0.086	0.083	<0.028	0.085	0.028	0.71
1	<u> </u>	<u>Ta</u>	*	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	1.2	4.0
1		<u>Th</u>	*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 0.50	-
1		Pb Cd	**	7.1 0.11	5.4 0.053	7.4 0.17	19 0.65	4.8 <0.048	4.6 0.11	7.7 0.25	8.0 0.13	25 0.76	15 0.29	18 0.49	21 0.62	22 0.68	2.0 <0.048	12 0.31	0.52 0.048	0.16
1 '		OC	**	2.9	2.9	3.9	4.9	1.8	3.2	3.2	4.0	4.5	3.4	5.8	3.5	3.6	0.89	3.5	0.048	
1 '	③炭素成分※	EC EC		1.2	1.1	1.8	1.8	0.54	1.3	1.2	1.4	2.1	1.3	2.1	1.4	1.8	0.89	1.4	0.0049	1.1
1 '	$(\mu \text{ g/m}^3)$	WSOC	**	2.4	2.5	3.2	3.4	1.7	2.2	2.2	2.6	3.6	2.8	4.0	3.3	2.9	0.23	2.7	0.0049	0.016 0.094
×.00	<u> </u>	WSOC	ተ ቸ	2.4	2.0	3.2	3.4	1.7	۷.۷	۷.۷	2.0	3.0	2.0	4.0	ა.ა	2.9	0.60	Z.1	0.028	0.094

※OC∶有機炭素

EC:元素状炭素

WSOC:水溶性有機炭素

注1)平均値は、検出下限値未満の値を検出下限値の1/2として算出した。

注2) 表中の"-"は分析をしていないことを示す。 注3) 表中の"*"は成分分析ガイドラインの実施推奨項目を示す。 注4) 表中の"**"は成分分析ガイドラインにない項目を示す。