LiNGAM 及びPC アルゴリズムによる 塩分測定に係る因果探索

近藤 健·久保 文雄¹

The Causal Discovery of Salinity Measurement Using LiNGAM and the PC Algorithm

Ken KONDO, and Fumio KUBO¹

Summary

In the salinity measurements of seawater conducted at this research institute, the number of repeated measurements may increase before determining the final value. To elucidate the causes of the increased number of measurements, we investigated the measurement environment related to temperature and analyzed its relationship with the number of measurements. We employed LiNGAM (Linear Non-Gaussian Acyclic Model) and the PC (Peter and Clark) algorithm, both statistical causal discovery methods, to estimate the causal relationships among factors and constructed a DAG (Directed Acyclic Graph). The results of the causal discovery revealed that the causal order is temperature \rightarrow number of measurements. Additionally, it was suggested that reducing the range of water sample temperature and room temperature could be effective in minimizing the number of measurements. That is, stabilizing water sample temperature and room temperature could shorten the measurement time.

キーワード: 塩分, 因果探索, LiNGAM, PC アルゴリズム, 有向非巡回グラフ Keywords: salinity, causal discovery, LiNGAM, PC algorithm, DAG

I. はじめに

海水の塩分は水温とともに海水の状態を表す基本的な特性量である.塩分の測定は 1960 年代頃までは塩素量を測定 し、間接的に塩分が求められ、千分率 (‰) で表されていた.それ以降は、電気伝導度から塩分を求める方法が一般的 になり、1980 年にはユネスコにより採択された海水の状態方程式 (Practical Salinity Scale 1978: PSS 78) で定義される実 用塩分 (practical salinity) が長く用いられ^{1,2}、測定方法は気象庁の海洋観測指針に示されている³⁾. 2009 年に海水の状 態方程式が改正され、新たな海水の状態方程式 (Reference Composition Salinity) で定義される絶対塩分が示されたが^{4,5}、 同年 IOC の国際海洋データ・情報交換 (IODE: International Oceanographic Data and Information Exchange) の第 20 回会議 において、引き続き実用塩分を保管するという勧告 (Recommendation IODE-XX.4) が採択されている⁹⁾.地方独立行政 法人大阪府立環境農林水産総合研究所水産技術センター (水産技術センター) が実施する浅海定線調査をはじめとする 各種調査,また同センター地先での定置観測においても実用塩分による測定および記録を行っているため⁷⁾、本研究は 実用塩分について述べることとする.

実用塩分Sは電気伝導度,水温を測定し、PSS78の定義式により求められる.大気圧下における定義式を(1)に示す.

$$S = a_0 + a_1 R_t^{1/2} + a_2 R_t + a_3 R_t^{3/2} + a_4 R_t^2 + a_5 R_t^{5/2} + \Delta S$$

$$\Delta S = \frac{t - 15}{1 + k(t - 15)} (b_0 + b_1 R_t^{1/2} + b_2 R_t + b_3 R_t^{3/2} + b_4 R_t^2 + b_5 R_t^{5/2})$$
(1)
$$R_t : 大気圧下で温度 toCにおける塩化カリウム標準溶液 (1 kg 中に 32.4356g の KCl を含んだ水溶液) に対する電気伝導度比
$$a_0 = 0.0080 \quad a_1 = -0.1692 \quad a_2 = 25.3851 \\ a_3 = 14.0941 \quad a_4 = -7.0261 \quad a_5 = 2.7081 \\ b_0 = 0.0005 \quad b_1 = -0.0056 \quad b_2 = -0.0066 \\ b_3 = -0.0375 \quad b_4 = 0.0636 \quad b_5 = -0.0144 \\ k = 0.0162 \end{cases} \sum_{i=0}^{5} b_i = 0.0000$$$$

S は無次元の値のため,数値のみで表示されるが,psu (Practical Salinity Units) をつけて表示されることもある.なお,式 (1) から求められる塩分は, $-2 \leq t \leq 35$ (°C), $2 \leq S \leq 42$ の範囲内で有効である.オープンソースのプログラ ミング言語である Python のライブラリ gsw を用い,式 (1) における実用塩分,電気伝導度及び水温の関係を第1図に 示す⁸.電気伝導度が高く水温が低いほど塩分が高くなる非線形の関係である.電気伝導度は検水の塩分以外に水温に も密接に関係していることがわかる.

水産技術センターでは、鶴見精機社製のサリノメーターT.S.K. DIGI-AUTO MODEL.5(以下 DA5)で塩分を測定して いる. DA5 は国際標準の実用塩分の定義に従って測定し、精度は±0.005,分解能は 0.001 である. 同センターにおける DA5 による測定では、標準海水の付与値±0.005 以内と測定値の真度は高いものの、測定値を決定するまでに指示値に ばらつきが生じ、繰り返し測定回数が増えることがある.繰り返し測定回数が増えると、測定に時間を要することにな るほか、測定を繰り返すうちに試水が不足し、欠測を招く事態が懸念される.そこで本研究では、温度に関する項目と して、分析室の室温、検水温度、DA5 の恒温槽水温及び環境温度(DA5 が観測し恒温槽水温を決定するために用いら れる)、測定回数との関係を相関分析した.また、海水中の懸濁物や植物プランクトンの量による測定回数への影響の 有無を確認するため、濁度に加え、植物プランクトンの指標であるクロロフィルa濃度との関係も相関分析した.さら にこれらの観測変数間の因果関係を明らかにするため、統計的因果探索の手法である線形非ガウス非巡回モデル

(LiNGAM: Linear Non-Gaussian Acyclic Model)^{9,10} や PC (Peter and Clark) アルゴリズム^{11,12)}を用いての因果探索も行い,因果構造を示す有向非巡回グラフ (DAG: Directed Acyclic Graph)を作成し,その因果構造を明らかにした.

第1図. 実用塩分,水温および電気伝導度との関係 電気伝導度を0.5~70 mf/cmの範囲において1.5 mf/cm間隔で,水温を0~30℃の範囲に おいて0.75℃間隔で,それぞれから実用塩分を求めプロットした(青点).

Ⅱ. 材料および方法

1. 材料

塩分測定時の分析室室温の測定には,温度記録計 TR71A (ティアンドディ社)を用いた.検水の水温の測定 には,隔測式プロープデジタル温度計 (シンワ測定社)を 用いた.塩分の測定には 先述の DA5 を用いた.DA5 の 標準化には標準海水として IAPSO (International Association for Physical Sciences of the Ocean) Standard Seawater P (Ocean Scientific Internationa 社)シリーズを用いた.海水は 2023 年 11 月から 2024 年 3 月までの間に大阪湾 20 点(第 2 図) の表層水および底層水を用いた.表層水はバケツ,底層水 は北原式採水器あるいはニスキン採水器で採水し,いずれ も 250 mL ポリ瓶で密閉の上,分析室内で常温保存した. 解析には,温度測定に欠損値のある 2 月の定点 11 の底層 及び 3 月の定点 12~20 の底層を除外した 190 検体の測定 データを用いた.

図中の赤点は採水地点を,数字は地点番号を表す.

2. 方法

DA5による塩分測定と測定環境の観測

検水を DA5 で塩分測定し、塩分が±0.001 に収まる値が3回観測された場合、それら3つの値における最頻値あるい は最頻値がない場合は中央値を測定値として採用した.測定値が確定されるまでの測定回数、測定値が得られた際の室 温、検水の温度、DA5 内の恒温槽の水温及び DA5 が測定した環境温度を記録した.温度の測定値については塩分の測 定開始から終了までの平均値、標準偏差及び範囲(最大値-最小値)を算出し、測定回数との相関を Pearson の積率相関 係数により確認した.

濁度, クロロフィル a濃度の測定

濁度,クロロフィル a 濃度は、検水を採水した地点の深度毎において多項目水質計 RINKO-Profiler (JFE アドバンテック社)を用いて測定した.

非ガウス性検定

データの非ガウス性を確認するために、測定回数、室温、検水の温度、恒温槽水温、環境温度、濁度及びクロロフィル a 濃度のデータに対してシャピロ・ウィルク検定¹³を行った(有意水準 0.05).

LiNGAM 及び PC アルゴリズムによる因果探索

因果探索手法として用いた LiNGAM とは、一定の仮定の下において、連続値データ間の因果構造を推定する手法である. その構造方程式モデルを式(2) に示す.

溝造方程式モデル

$$x_i = \sum_{j \neq i} b_{ij} x_j + e_i$$
 (i=1,...,p), (j=1,...,p; j≠i) (2)
 x : 観測変数 b_{ij} : 係数 e_i : 誤差変数

観測変数 x_iはその変数以外の観測変数 x_jとその誤差変数 e_iの線形和からなる.これを行列表現したものを式(3)に 示す. **行列表現**

$$x = Bx + e

 ↓

 x = A e

 A = (I - B)^{-1}

 x = A e

 x: 観測変数ベクトル

 B:係数行列

 x = A e

 A : 混合行列

 (3)

 (3)

 A : 混合行列$$

BはiXjの係数行列である. x=Bx+eをxについて解くと得られる行列Aは、独立成分分析を用いて混合行列とし て識別可能であり、混合行列Aから係数行列Bを導くことができる.係数行列が明らかになれば因果構造を一意に推 定することが可能となる.観測変数は、塩分の測定回数、環境温度範囲、恒温槽水温範囲、室温範囲、検水温度範囲、 塩分、濁度及びクロロフィルa濃度の実測値をそれぞれ標準化(平均0,標準偏差1になるようスケーリング)した値 を用いた.標準化にはプログラミング言語Python及び機械学習用のオープンソースライブラリ scikit-leam¹⁴⁾を用いた. 因果探索は Python の機械学習用オープンソースライブラリ lingam を用い、ICA-LiNGAM (Independent Component Analysis)¹⁵⁾により計算した.モデルの混合行列Aは統計的手法である独立成分分析^{16,17)}を用いて推定され、Aを置換・ 正規化し、求められた係数行列Bの成分のゼロ・非ゼロパターンからDAGを作成した.なお、本研究におけるLiNGAM では、観測変数から得られた構造方程式が線形であること、誤差変数が非ガウス分布であること、塩分は電気伝導度と 水温の2変数に依存することから未観測変数はないことと仮定した.

LiNGAM は、関数形にも外生変数の分布にも仮定を置くセミパラメトリックな手法として知られているが、本研究 ではさらに関数形にも外生変数の分布にも仮定を置かないノンパラメトリックな手法として代表的な PC アルゴリズム を用いての因果探索も行い、LiNGAM との因果構造を比較した. PC アルゴリズムは主に離散値を対象としたベイジア ンネットワークによる因果探索手法の一つである. すべてのノード間に無向エッジを接続した完全グラフから開始し、 2 変数が互いに独立、または他の変数で条件付けしたときに独立となる場合、エッジを除外する. まだ隣接しているす べての変数の組に対して、1 つの変数で条件付けして独立性を検定する. このプロセスをすべての変数のペアで実施し、 無向グラフを得る. 得られた無向グラフはオリエンテーションルール^{18,19}による方向づけを行い DAG を構築する手法 である. PC アルゴリズムは、Python のオープンソースライブラリ gCastle²⁰ により因果探索を行った. 観測変数を離散 値として扱うため、データの前処理として連続値データをそれぞれ等幅分割法(順序尺度)により 5 つのビンに区切り、 1 ~5 の離散値とした. 条件付き独立性の検定にはカイ二乗検定を用いた(有意水準0.05). さらに対象とする観測変数 は、測定回数を除いていずれも本来は連続値のため、ビン分割は行わず独立性の検定に偏相関係数による Fisher の Z 検 定を用いることで連続値を対象とした PC アルゴリズムによる因果探索も行った. その際、観測変数は LiNGAM 同様 に標準化した値を用いた.

Ⅲ. 結果および考察

1. 測定回数と各観測項目との相関

190 検体の塩分の測定回数における最小値は3回,最大値は29回,平均値は10回,中央値は9回であった.塩分の 測定回数と,測定値を確定するまでの環境温度,恒温槽水温,室温,検水温の観測値の平均値,標準偏差及び範囲との 相関係数,そして,塩分の測定回数と,塩分,濁度及びクロロフィルa濃度との相関係数を第1表に示す.検水温の範 囲の相関係数が0.6443 と最も高く,次に検水温の標準偏差との相関係数が高く0.5783 であった.恒温槽水温を除いて, 標準偏差よりも範囲との相関が高い傾向が見られた.なお,恒温槽水温の標準偏差と範囲との相関係数は,それぞれ 0.2024 と 0.1386 といずれも低くほとんど差がなかった.これらの結果から,因果探索に用いる温度の変数として,より 相関係数が高かった範囲を解析に用いることとした.

観測	相関係数				
	平均值	0.0427			
環境温度	標準偏差	0.1538			
-	範囲	0.3143			
	平均値	-0.0102			
恒温槽水温	標準偏差	0.2024			
	範囲	0.1386			
	平均值	0.0654			
室温	標準偏差	0.1889			
	範囲	0.2852			
	平均值	-0.0323			
検水温	標準偏差	0.5783			
	範囲	0.6443			
塩	塩分				
濁	濁度				
クロロ	-0.1079				

第1表。測定回数と各観測項目との相関係数

2. データの線形性と非ガウス性の確認

LiNGAM において、一般的に非線形な関係の変数は適用できないため、塩分と温度間における線形性の確認を行った. 観測した室温は最小値が 24.92℃、最大値が 26.20℃、最も範囲の大きかった試水の水温は最小値が 24.8℃、最大値 が 27.7℃だった. いずれも温度は調節されているため、その範囲は大きくない. PSS78 の定義式から、電気伝導度 50 mS/cm、1 気圧での塩分と温度(24~28℃)の関係を第3回に示す. この温度範囲においては、塩分と温度の関係は線 形近似し、LiNGAM の前提である線形性は満たされると考えられる. なお、その他の変数間の関係は線形性が未知であ るが、線形性があるものと仮定した.

次に LiNGAM に用いるデータの非ガウス性を確認するため、測定回数、室温範囲、検水温度範囲、恒温槽水温範囲、 環境温度範囲、塩分、濁度及びクロロフィル a 濃度についてシャピロ・ウィルク検定を行った. その結果、いずれも p 値が 0.05 未満であり、データがガウス分布であるという仮説は棄却された. LiNGAM の前提である非ガウス性は満た されると考えられる.

3. LiNGAM による因果探索

相関分析は変数間の関係を示すためによく用いられるが、ある変数間で相関関係が認められたとしても、影響の方向 は判明できず、変数間の因果関係や因果順序といった因果構造を同定することはできない.そこで、測定回数と温度等 の因果関係の有無、因果関係がある場合はその因果順序、すなわち測定回数が多いから時間を要しその間に温度変化が 生じたのか、温度変化が生じたから測定値が安定せず測定回数が多くなったのか(第4図)を明らかにするため、 LiNGAMを用いて変数間の因果関係を推定した.

測定回数,塩分,室温範囲,検水温度範囲,恒温槽水温範囲,環境温度範囲,濁度及びクロロフィルa濃度について LiNGAM による因果探索を行った結果,行列 B が得られた.得られた行列 B を式 (3) に代入したものが式 (4) であ る.

$[x_1]$		Г0	0	0.200	0	0	0.607	0	$0_{1} x_{11}$	$[e_1]$	
<i>x</i> ₂		0	0	0	0	0	0	0	$0 x_2 $	e_2	
x_3		0	0	0	0	0	0	0	$0 x_3 $	e_3	
x_4	_	0	0	0	0	0	0	0	$0 x_4 $	$ e_4 $	
x_5	-	0	0	0.746	0	0	0	0	$0 x_5 ^{\neg}$	$ e_5 $	
x_6		0	0	0	0	0	0	0	$0 x_6$	e_6	(4)
x_7		0	0	0	0	0	0	0	$0 x_7 $	e_7	
$\lfloor x_8 \rfloor$		Lo	-0.217	0	0	0	0	0	0 $[x_8]$	Le ₈ J	

x₁は測定回数, x₂は塩分, x₃は環境温度範囲, x₄は恒温槽水温範囲, x₅は室温範囲, x₆は検水温度範囲, x₇は濁度, x₈ はクロロフィルa濃度を示す.eはそれぞれの誤差項を示す.式(4)の係数行列を因果的順番が早い(行成分に0が多い)順,対角成分が0,下三角行列になるよう並べ替え,行成分と列成分がいずれも0の変数は全ての行列から削除し (他の変数と因果関係を持たないため),係数行列の並べ替えに伴い目的変数,説明変数,及び誤差項のベクトルを並 び替えたものが式(4)'である.

第4図。 測定回数と温度の想定される因果関係

図中の楕円は要因(ノード)を,矢印は因果の方向(エッジ)を示す.図はそれぞれ,測定回数が温度に影響を与えている(A),温度が測定回数に影響を与えている(B),及び測定回数と温度が独立した状態(C)を示す.

X1:測定回数 X2:塩分 X3:環境温度範囲 X4:恒温槽水温範囲 X5:室温範囲 X6:検水温度範囲 X7:濁度 X8:クロロフィルa

第5図。 LiNGAM による測定回数,塩分,環境温度範囲,恒温槽水温範囲,室温範囲,検水 温度範囲, 濁度及びクロロフィル a濃度の因果関係を示した有向非巡回グラフ

楕円はノード, 矢印は因果順序を示した有向エッジ, 数値はノード間の係数を表す.

式(4) をもとに作成した DAGを第5図に示す。測定回数を子ノードとして、環境温度範囲及び検水温度範囲の2つ の親ノードを上流とするエッジが示された.すなわち、測定回数は環境温度範囲及び検水温度範囲の影響を受ける関係 にあることを示している。検水温度範囲の係数は0.607であり、検水温度範囲が上昇すると測定回数が上昇する関係に あることを示している.環境温度範囲の係数は0.200であり、環境温度範囲が上昇すると測定回数が上昇することが示 された. 室温範囲の親ノードとして環境温度範囲が示されたが,環境温度範囲は DA5 が計測する室温であるため,任 意の値に設定することはできず、室温に依存するという外部知識により、このエッジは適切でないと判断できる.また、 塩分,恒温槽水温範囲,濁度及びクロロフィルa濃度は測定回数とはエッジがなく,独立していることがわかった.こ れらの項目は測定回数の変動に寄与しないといえる. 恒温槽水温範囲は測定に影響を与えるように思われるが測定回数 とは独立していた. 恒温槽は DA5 の内部にあり, 検水温度を一定に保持するための装置である. 恒温槽水温は DA5 の 観測した環境温度から決定され、6Lの水が入った恒温槽が加温されるため、室温に変化が生じた際、恒温槽水温の変 化までには時間を要する.他の温度に関する項目に比べ、恒温槽温度変化が測定に影響を与えるまでの時間差が比較的 大きく、測定回数との間にエッジが検出されにくかったことが理由として考えられる. なお、塩分を親ノード、クロロ フィル a 濃度を子ノードとして係数が-0.217 であった.湾口部や底層では塩分が高くなり、そのような検水ではクロロ フィル a 濃度(植物プランクトン)が低くなることを示したものと考えられる.以上のことから LiNGAM を用いた因 果探索では、因果の順序としては温度→測定回数の順であることがわかった.また、測定回数を少なくするには、環境 温度範囲及び検水温度範囲を小さくすることが有効であり、特に検水温度範囲の寄与が最も大きかったことが示された.

4. PC アルゴリズムによる因果探索

標準化した測定回数,塩分,室温範囲,検水温度範囲,恒温槽水温範囲,環境温度範囲,濁度及びクロロフィルα濃度について,PCアルゴリズムによる因果探索を行い,得られた因果グラフを第6回に示す.なお,変数を離散値として扱った際には表2の通り5つのビンに分割した.第6回のAは連続値を用いて得られたグラフ,Bは離散値を用いて得られたグラフである.A,Bともにスケルトン構造は共通していた.いずれの結果も測定回数と環境温度範囲及び検水温度範囲ノード間,環境温度範囲と室温範囲ノード間及び恒温槽水温範囲と検水温度範囲ノード間でエッジが検出された.また,塩分,濁度,クロロフィルα濃度の3つのノードは測定回数ノードとは独立した関係であったが,塩分とクロロフィルα濃度のノードはエッジが検出された.Aは環境温度範囲と検水温度範囲から測定回数へ向かう2本の有向エッジが検出された.BはAと共通する構造であったが,測定回数と恒温槽水温度範囲から検水温度範囲へ向かう2本の有向エッジが検出された.BはAと共通する構造であったが,測定回数と恒温槽水温度範囲から検水温度範囲へ向かう2本の有向エッジが検出された.測定回数と検水温度範囲の有向エッジがAとBで逆を示した.逆方向のエッジが検出された理由としては、変数を分割する前処理を加え離散値として扱ったことが影響したと考えられる.また,連続値と離散値では独立性検定が異なるので,これらの影響によりAとBでは因果の方向が異なったと考えられる.他にもAでは環境温度範囲から測定回数ノードへの有向エッジがAでは無向エッジになっていた.いずれも先述の前処理や検定の影響によるものと考えられる.

第6図. PC アルゴリズムによる測定回数,塩分,環境温度範囲,恒温槽水温範囲,室温範囲,検水温度範囲,濁度及びクロロフィル a濃度の因果関係を示した因果グラフ

楕円はノード,矢印は因果の方向,線は因果関係を示したエッジを表す.変数に連続値を用いて作成した グラフ(A)と離散値を用いて作成したグラフ(B).

第2表. 各変数のビン分割による離散値化

ビン番号	x1:測定回数	x2 : 塩分	x3:環境温度範囲	x4: 恒温槽水温範囲	x5 :室温範囲		x6:検水温度範囲		x7 : 濁度	x8:クロロフィルa	
1	x1≦8 (92)	$23.2700 < x2 \le 25.2736$ (3)	$0 \leq x_3 \leq 0.4$ (92)	$0 \le x4 \le 2$ (74)	$0 \le x5 \le 0.18$ (1)	188)	$0\!\leq\!x6\!\leq\!0.32$	(146)	$0.12 < x7 \le 2.07$ (166)	$-3.522{<}x8{\stackrel{\scriptstyle \leq}{=}}0.882$	(160)
2	$9 \le x1 \le 13$ (62)	$25.2736{<}x2{}^{\leq}27.2672 (1)$	$0.4{<}x3{\leq}0.8$ (65)	$2 < x4 \le 4$ (55)	$0.18 {<} x5 {\leq} 0.36$ ((1)	$0.32 {<} x6 {\leq} 0.64$	(32)	$2.07 < x7 \le 4.01$ (18)	$0.882{<}x8{\stackrel{\scriptstyle \leq}{=}}5.264$	(22)
3	$14 \leq x1 \leq 18$ (19)	$27.2672 < x2 \le 29.2608$ (6)	$0.8 {<} x3 {\stackrel{_{\scriptstyle \leq}}{_{\scriptstyle =}}} 1.2$ (24)	$4 < x4 \le 6$ (54)	$0.36 {<} x5 {\stackrel{\scriptstyle \leq}{=}} 0.54$ ((0)	$0.64 {<} x6 {\leq} 0.96$	(6)	$4.01 < x7 \le 5.95$ (3)	$5.264{<}x8{\stackrel{\scriptstyle \leq}{=}}9.646$	(6)
4	$19 \leq x1 \leq 23$ (11)	$29.2608{<}x2{\stackrel{\scriptstyle \leq}{\scriptstyle}}31.2544~(11)$	$1.2 {<} x3 {\leq} 1.6$ (7)	6 <x4≦8 (4)<="" td=""><td>$0.54 {<} x5 {\leq} 0.72$ (</td><td>(0)</td><td>$0.96 {<} x6 \cong 1.28$</td><td>(3)</td><td>$5.95 < x7 \le 7.89$ (2)</td><td>$9.646{<}x8{\stackrel{\scriptstyle \leq}{=}}14.028$</td><td>(1)</td></x4≦8>	$0.54 {<} x5 {\leq} 0.72$ ((0)	$0.96 {<} x6 \cong 1.28$	(3)	$5.95 < x7 \le 7.89$ (2)	$9.646{<}x8{\stackrel{\scriptstyle \leq}{=}}14.028$	(1)
5	$24 {\leq} x1 {\leq} 29$ (6)	$31.2544{<}x2{\stackrel{\scriptstyle \leq}{\scriptstyle=}}33.2480~(169)$	$1.6 {<} x3 {\leq} 2.0$ (2)	$8 < x4 \le 10$ (3)	$0.72 {<} x5 {\stackrel{_{\scriptstyle \sim}}{_{\scriptstyle \sim}}} 0.9$ ((1)	$1.28 < x6 \leq 1.60$	(3)	$7.89 < x7 \le 9.83$ (1)	$14.028 < x8 \le 18.410$	(1)

表中の()内の数値はビンに含まれる標本数を示す.

LiNGAM で得られた DAG と比較すると、測定回数、環境温度範囲,室温範囲及び検水温度範囲ノード間を結ぶエッジのパターンは同じであり、類似した構造を示している.しかしながら、LiNGAM ではそれらの構造から恒温槽水温範囲は独立しているほか、ノード間の方向もそれぞれ異なっている.測定回数ノードの2本のエッジに着目すると、連続値を用いる LiNGAM と連続値を用いた PC アルゴリズムのエッジの方向は2本とも測定回数への有向エッジが示されているが、離散値を用いた PC アルゴリズムでのみ環境温度範囲と測定回数ノード間に無向エッジが、測定回数から検水温度範囲への有向エッジが示された.連続値を用いた際の有向エッジが共通していることから、連続値を無理に離散化することで、元のデータの特徴を損ねたことが考えられる.例えば第2表の室温範囲や検水温度範囲では、標本数の多くがビン番号1に含まれており、ビン番号1に含まれる標本のもつ情報が欠落してしまっていると考えられる.従って、LiNGAM と連続値を用いた PC アルゴリズムにおいて示された DAG が妥当と考えられる.これらの DAG で共通して示された有向エッジは、測定回数を子ノードとして、環境温度範囲及び検水温度範囲の2つの親ノードを上流とするエッジであり、因果の順序としては、温度→測定回数の順であることを示し、測定回数を少なくするには、環境温度範囲及び検水温度範囲を小さくすることが有効であることが示された.

5. まとめ

LiNGAM 及び PC アルゴリズムの解析結果から、塩分の測定回数は環境温度範囲や検水温度範囲といった温度範囲が 影響を与えていることが、その因果順序とともに示すことができた.

LiNGAM では測定回数に影響を与える主要な要因として,検水温度範囲の影響の大きさを定量的に示すことができた. 検水温度範囲は電気伝導度に密接に関連し,直接的に塩分測定に影響することが考えられるので,合理的で理解しやす い結果であった.室温範囲が環境温度範囲の子ノードとなっていたが,外部知識によりその方向を排除した.DAG で は示されなかったが,環境温度範囲は室温を計測して決定されるので,環境温度範囲を小さくするためには室温を一定 に保つことが重要であると考えられる.塩分,濁度及びクロロフィルα濃度も測定回数とは独立しており,検体の水質 が測定回数に影響を与えている可能性は低いと考えられた.PC アルゴリズムは,ビン分割せずに連続値を用いること でLiNGAM により示されたDAG と多くの点で共通した因果構造を示した.

本研究の結果、DA5を用いた塩分測定を速やかに行うためには、検水温度及び測定室温の変動を抑制し、温度範囲を 低く維持することが重要であると考えられる.DA5のマニュアルには試水を室温に十分(±2℃以内)なじませておく 旨が記載されており、これまでの塩分測定においても、すでに温度管理には一定の注意が払われていたが、本研究によ り測定回数と温度との関係が定量化、視覚化されたことで、検水と室温の温度管理がより一層求められることが示され た.本研究とは別に温度と塩分に関わる研究を進めているが、検体を保管する室内の位置によって検水の温度差に影響 を与えるデータが出ているところである。例えば、冬季では室内の高さによって温度差があること、暖房の送風の向き による温度差の影響などである。これらを考慮した検水と室温の管理が品質改善につながると考えられ、本研究から今 後の精度管理及び測定時間の短縮につながる情報が得られたといえる。LiNGAMを使用する際には、セミパラメトリ ック手法としていくつかの条件を満たす必要があるが、それを満たしていれば強力な因果探索ツールになることが示唆 された.連続値を用いた PC アルゴリズムも同様である。本研究で用いた検水は11 月から3 月の冬季のものであり、赤 潮が発生しやすい夏季の検水を使用していないため、比較的クロロフィル a 濃度の低い検水を使用していたといえる。 一年を通した検水を用いてデータを蓄積し因果探索を行うと、より確からしい因果関係が明らかになるかもしれない

Ⅳ. 摘要

塩分測定における測定回数増加の原因を明らかにするため、温度に関連する測定環境を調査し、測定回数との関係を 解析した. 統計的因果探索の手法である LiNGAM と PC アルゴリズムを用いて要因間の因果関係を推定した結果、因 果順序は温度→測定回数の順であることがわかった. また、測定回数を少なくするには、検水温度範囲及び測定機器の 環境温度範囲を小さくすることが有効であることが示唆された.

Ⅴ. 引用文献

- 1) Fofonoff, P. and Millard, R.C. (1983). Algorithms for computation of fundamental properties of seawater. *UNESCO Tech. Pap. in Mar. Sci.*, 44, 53.
- 2) Lewis E. L. (1980). The Practical Salinity Scale 1978 and its antecedents. J. Ocean. Eng., 5(1). 3-8.
- 3) 気象庁 (1999). 第5章 水温・塩分の観測. 海洋観測指針, 第1部, 38-48.
- McDougall, T. J., Jackett, D. R. and Millero, F. J. (2009). An algorithm for estimating Absolute Salinity in the global ocean. *Ocean. Sci. Discuss* 6, 215-242.
- 5) 河野健 (2010). 新しい海水の状態方程式と新しい塩分 (Reference Composition Salinity) について. 海の研究, 19(2), 127-137.
- 6) The IOC Committee on International Oceanographic Data and Information Exchange (2009). Recommendation IODE-XX.4. https://iode.org/index.php?option=com_content&view=article&id=155&Itemid=0 (2025 年 2 月アクセス確認)

- 地方独立行政法人大阪府立環境農林水産総合研究所水産技術センター事業資料集.気象・海象の定置観測. https://www.knsk-osaka.jp/publication/suisan_shiryo/index.html. (2025 年 2 月アクセス確認)
- 8) TEOS-10 developers. GSW-Python. https://teos-10.github.io/GSW-Python/intro.html. (2025年2月アクセス確認)
- 9) Shimizu, S., Hoyer, P. O., Hyvärinen, A. and Kerminen, A. J. (2006). A linear non-gaussian acyclic model for causal discovery. *J. Mach. Learn. Res.*, 7, 2003-2030.
- 10) 清水昌平 (2017). 統計的因果探索. 講談社.
- 11) Spirtes, P., Glymour, C. N., Scheines, R., and Heckerman, D. (2000). Causation, prediction, and search. MIT press.
- 12) 植野真臣 (2013). ベイジアンネットワーク. コロナ社.
- 13) Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality. *Biometrika*, 52, 3 and 4, 591-611.
- 14) Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. J. Mach Learn. Res., 12, 2825-2830.
- 15) Ikeuchi, T., Haraoka, G., Ide, M., Kurebayashi, W. and Shimizu, S. Lingam's documentation. https://lingam.readthedocs.io/en/latest/reference/ica_lingam.html. (2025年2月アクセス確認)
- 16) Comon, P. (1994). Independent component analysis a new concept? Signal Processing, 36, 287-314.
- 17) Hyvarinen, A., Karhunen, J. and Oja, E. (2001). Independent Component Analysis. Wiley Interscience.
- **18)** Verma, T. and Pearl, J. (1992). An algorithm for deciding if a set of observed independencies has a Causal Explanation. *Proc. Conf. on Uncertainty in Artif. Intell.*, 323-330.
- **19)** Meek, C. (1995). Causal Inference and Causal Explanation with Background Knowledge. *Proc. Conf. on Uncertainty in Artif. Intell*, 403-410.
- 20) Kalisch, M. and Büehlmann, P. (2005). Estimating high-dimensional directed acyclic graphs with the PC-algorithm. ar Xiv. https://arxiv.org/abs/math/0510436. (2025年2月アクセス確認)